การดำเนินการของเซต (Operation of set)
เอกภพสัมพัทธ์ (Relative Universe) คือ เซตที่ใช้กำหนดขอบเขตของสิ่งต่าง ๆ ที่จะกล่าวถึง โดยมีข้อตกลงว่าจะไม่กล่าวถึงสิ่งอื่นใดซึ่งนอกเหนือจากสิ่งที่เซตนี้กำหนดไว้ เขีนแทนด้วย U ถ้ากล่าวถึงเซตของจำนวนโดยไม่กำหนดเอกภพสัมพัทธ์ ให้ถือว่าเอกภพสัมพัทธ์คือเซตของจำนวนจริง
การดำเนินการของเซต (Operation of set) เป็นการสร้างเซตใหม่ขึ้นจากเซตที่กำหนดให้ ได้แก่
1. ยูเนียน (Union)
A U B คือ เซตที่ประกอบด้วยสมาชิกของเซต A หรือเซต B หรือทั้งสองเซต
2.อินเตอร์เซกชัน (Intersection)
A ∩ B คือ เซตที่ประกอบด้วยสมาชิกของเซต A และเซต B ที่ซ้ำกัน
3. ผลต่าง (Difference)
A – B คือ เซตที่ประกอบด้วยสมาชิกของเซต A โดยที่ไม่เป็นสมาชิกของเซต B
4. คอมพลีเมนต์ (Complement)
A’ คือ เซตที่ประกอบด้วยสมาชิกของเอกภพสัมพัทธ์ U แต่ไม่เป็นสมาชิกของ A
– ยูเนียน (Union) : ยูเนียนของเซต A และเซต B จะได้เซตใหม่ ซึ่งมีสมาชิกของเซต A หรือเซต B หรือทั้งสองเซต
“ ยูเนียนของเซตA และเซต B เขียนแทนด้วย A B ”
A B = {x| x A หรือ x เ ป็นสมาชิกของทั้งสองเซต} |
เช่น A = {1,3,5} และ B = {3,6,9}
จะได้ A B ={1,3,5,6,9}
ดังนั้น ยูเนียน (Union) มีนิยามว่า เซต A ยูเนียนกับเซต B คือเซตซึ่งประกอบด้วยสมาชิกที่เป็นสมาชิกของเซต A หรือ เซต B หรือทั้ง A และ B สามารถเขียนแทนได้ด้วย สัญลักษณ์ A ∪ B
ตัวอย่างเช่น A ={1,2,3}
B = {3,4,5}
∴ A U B = {1,2,3,4,5}
อินเตอร์เซกชัน
– อินเตอร์เซกชัน (Intersection): อินเตอร์เซกชันของเซต A และเซต B จะได้เซตใหม่ ซึ่งสมาชิกเป็นสมาชิกของเซตทั้งเซต A และเซต B
“ อินเตอร์เซกชันของเซตA และเซต B เขียนแทนด้วย A B ”
A B = {x| x A และ x B} |
เช่น A = {1,2,3,4,} , B = {2,4,6} และ C = {0,1}
จะได้ A B = {2,4}
A C = {1}
B C = {}
ดังนั้น อินเตอร์เซกชัน (Intersection) มีนิยามคือเซต A อินเตอร์เซกชันเซต B คือเซตซึ่งประกอบด้วยสมาชิกที่เป็นสมาชิกของเซต A และเซต B สามารถเขียนแทนได้ด้วยสัญลักษณ์ A ∩ B
ตัวอย่างเช่น A ={1,2,3}
B = {3,4,5}
∴ A ∩ B = {3}
คอมพลีเมนต์
– คอมพลีเมนต์ (Complement) : คอมพลีเมนต์ของเซต A คือ เซต A ที่ประกอบด้วยสมาชิกที่เป็นสมาชิกของ U แต่ไม่ใช่สมาชิกของเซต A
“คอมพลีเมนต์ของเซต A เขียนแทนด้วย A ”
A = {x| x € U และ x € A } |
เช่น U ={0,1,2,3} , A ={0,2,4} และ B = {1,3}
จะได้ A = {1,3}
B = {0,2}
คอมพลีเมนต์ (Complements) มีนิยามคือ ถ้าเซต A ใดๆ ในเอกภพสัมพัทธ์ แล้ว คอมพลีเมนต์ของเซต A คือ เซตที่ประกอบด้วยสมาชิกที่เป็นสมาชิกของ U แต่ไม่เป็นสมาชิกของ A สามารถเขียนแทนได้ด้วยสัญลักษณ์ A’
ตัวอย่างเช่น U = {1,2,3,4,5}
A ={1,2,3}
∴ A’ = {4,5}