ตรรกศาสตร์เบื้องต้น ม.4
2.1 ประพจน์
2.2 การเชื่อมประพจน์
2.3 การหาค่าความจริงของรูปแบบของประพจน์
2.4 การสร้างตารางค่าความจริง
2.5 รูปแบบของประพจน์ที่สมมูลกัน
2.6 สัจนิรันดร์
ประพจน์
ประพจน์ ข้อความหรือประโยคที่มีค่าความจริง(T)หรือเท็จ(F) อย่างใดอย่างหนึ่ง ส่วนข้อความรูป คำสั่ง คำขอร้อง คำอุทาน คำปฏิเสธ ซึ่งไม่อยู่ในรูปของประโยคบอกเล่า จะเป็นข้อความที่ไม่เป็นประพจน์ สำหรับข้อความบอกเล่าแต่มีตัวแปรอยู่ด้วย ไม่สามารถบอกว่าเป็นจริงหรือเท็จจะไม่เป็นประพจน์ เรียกว่าประโยคเปิด
ประโยคที่มีค่าความจริงไม่แน่นอน หรือไม่อาจระบุได้ว่ามีค่าความจริงเป็นจริงหรือเป็นเท็จได้ ไม่เป็นประพจน์
การเชื่อมประพจน์
โดยปกติเมื่อกล่าวถึงข้อความหรือประโยคนั้นมักจะมีกริยามากกว่าหนึ่งตัว แสดงว่าได้นำประโยคมาเชื่อมกัน มากกว่าหนึ่งประโยค ดังนั้นถ้านำประพจน์มาเชื่อมกัน ก็จะได้ประพจน์ใหม่ ซึ่งสามารถบอกได้ว่าเป็นจริงหรือเป็นเท็จ ตัวเชื่อมประพจน์มีอยู่ 5 ตัว และตัวเชื่อมที่ใช้กันมากในตรรกศาสตร์คือ และ หรือ ถ้า…แล้ว ก็ต่อเมื่อ ไม่
1. ตัวเชื่อมประพจน์ “และ”
การเชื่อม p และ q เข้าด้วยกันด้วยตัวเชื่อมประพจน์ “และ” สามารถเขียนแทนได้ด้วยสัญลักษณ์ p ∧ q ซึ่งจะมีค่าความจริงเป็นจริง (T) เมื่อ p และ q มีค่าความจริงเป็นจริง (T) ทั้งคู่ นอกนั้นมีค่าความจริงเป็นเท็จ (F)
2. ตัวเชื่อมประพจน์ “หรือ”
การเชื่อม p และ q เข้าด้วยกันด้วยตัวเชื่อมประพจน์ “หรือ” สามารถเขียนแทนได้ด้วยสัญลักษณ์ p ∨q ซึ่งจะมีค่าความจริงเป็นเท็จ (F) เมื่อ p และ q มีค่าความจริงเป็นเท็จ (F) ทั้งคู่ นอกนั้นมีค่าความจริงเป็นจริง (T)
3. ตัวเชื่อมประพจน์ “ถ้า…แล้ว”
การเชื่อม p และ q เข้าด้วยกันด้วยตัวเชื่อมประพจน์ “ถ้า…แล้ว” สามารถเขียนแทนได้ด้วยสัญลักษณ์ p → q ซึ่งจะมีค่าความจริงเป็นเท็จ (F) เมื่อ p เป็นจริง (T) และ q เป็นเท็จ (F) นอกนั้นมีค่าความจริงเป็นจริง (T)
4. ตัวเชื่อมประพจน์ “ก็ต่อเมื่อ”
การเชื่อม p และ q เข้าด้วยกันด้วยตัวเชื่อมประพจน์ “ก็ต่อเมื่อ” สามารถเขียนแทนได้ด้วยสัญลักษณ์ p ⇔ q ซึ่งจะมีค่าความจริงเป็นจริง (T) เมื่อ p และ q มีค่าความจริงตรงกัน และจะมีค่าความจริงเป็นเท็จ (F) เมื่อ p และ q มีค่าความจริงตรงข้ามกัน
5. นิเสธของประพจน์ “ไม่” นิเสธของประพจน์ใดๆ คือ ประพจน์ที่มีค่าความจริงตรงกันข้ามกับประพจน์นั้นๆ และสามารถเขียนแทนนิเสธของ p ได้ด้วย ~p
ประพจน์ที่สมมูลกัน
ประพจน์ 2 ประพจน์จะสมมูลกัน ก็ต่อเมื่อ ประพจน์ทั้งสองมีค่าความจริงเหมือนกัน ทุกกรณีของค่าความจริงของประพจน์ย่อย
การทดสอบว่าประพจน์ 2 ประพจน์ สมมูลกัน ทำได้ 2 วิธีคือ
1. สร้างตารางแจกแจงค่าความจริง ค่าความจริงต้องตรงกันทุกกรณี
2. โดยการใช้หลักความจริงและประพจน์ที่สมมูลกันแบบง่ยๆที่ควรจำ เพื่อแปลงรูปประพจน์ไปเป็นแบบเดียวกัน
ตัวอย่างประพจน์ที่สมมูลกันที่ควรทราบ มีดังนี้
p ∧ q สมมูลกับ q ∧ p
p ∨ q สมมูลกับ q ∨ p
(p ∧ q) ∧ r สมมูลกับ p ∧ (q ∧ r)
(p ∨ q) ∨ r สมมูลกับ p ∨ (q ∨ r)
p ∧ (q ∨ r) สมมูลกับ (p ∧ q) ∨ ( p ∧ r)
p ∨ (q ∧ r) สมมูลกับ (p ∨ q) ∧ ( p ∨ r)
p → q สมมูลกับ ~p ∨ q
p → q สมมูลกับ ~q → ~p
p ⇔ q สมมูลกับ (p → q) ∧ (q → p)
ส่วนนิรันดร์
สัจจะ แปลว่าจริง ส่วนนิรันดร์ แปลว่าตลอดกาล ประพจน์ที่เป็นสัจนิรันดร์ คือ ประพจน์ที่มีค่าความจริงเป็นจริง ทุกกรณีของประพจน์ย่อย
สัจนิรันดร์ คือรูปแบบของประพจน์ที่มีค่าความจริงเป็นจริงเสมอ
วิธีการพิสูจน์การเป็นสัจนิรันดร์
การพิสูจน์ทำได้หลายวิธีไม่ว่าจะเป็น มองจากตารางค่าความจริง หรืออาจจะหาข้อขัดแย้งก็ได้
1) วิธีพิสูจน์จากตารางค่าความจริง
ถ้าเรามองจากตารางค่าความจริงประพจน์ที่เราพิจารณาจะต้องเป็น “จริงทุกกรณี” ถ้าเป็นเท็จแค่กรณีเดียวถือว่าไม่เป็นสัจนิรันดร์
เช่น พิจารณาประพจน์ (p→q)∨p ว่าเป็นสัจนิรันดร์หรือไม่
วิธีพิสูจน์ เราจะใช้วิธีสร้างตารางค่าความจริง ของประพจน์ (p→q)∨p
จากตารางจะเห็นว่าทุกกรณีมีค่าความจริงทั้งหมด ดังนั้นประพจน์ (p→q)∨p
เป็นสัจนิรันดร์
ลองมาดูตัวอย่างกรณีที่ไม่เป็นสัจนิรันดร์
พิจารณาประพจน์ (p∨q)→q ว่าเป็นสัจนิรันดร์หรือไม่
เราจะสร้างตารางค่าความจริง ดังนี้
การอ้างเหตุผล คือ การอ้างว่า “สำหรับเหตุการณ์ P1, P2,…, Pn ชุดหนึ่ง สามารถสรุปผลที่ตามมา C ได้” การอ้างเหตุผลนี้ ได้รับเลือกเป็นตัวแทนของ ข้อสอบในเรื่องตรรกศาสตร์ ให้เป็นข้อสอบเข้ามหาวิทยาลัย อย่าง O-Net และ PAT1 บ่อยๆ จึงเป็นเรื่องที่สำคัญมาก
การอ้างเหตุผลประกอบด้วย 2 ส่วน คือ
1. เหตุ หรือสิ่งที่กำหนดให้
2. ผล หรือสิ่งที่ตามมา
สำหรับการพิจารณาว่า การอ้างเหตุผลนั้นสมเหตุสมผลหรือไม่นั้นพิจารณาได้จากประพจน์ ( P1 ∧ P2 ∧ … Pn) → C ถ้าประพจน์ดังกล่าวมีค่าความจริงเป็นจริงเสมอ (เป็นสัจนิรันดร์) เราสามารถสรุปได้ว่าการอ้างเหตุผลดังกล่าวเป็นการอ้างที่สมเหตุสมผล ตัวอย่างเช่น
เหตุ 1. p → q
2. p ผล q
สัจนิรันดร์
ประพจน์ที่เป็นสัจนิรันดร์ คือ รูปแบบของประพจน์ที่มี ค่าความจริงเป็นจริงเสมอ ไม่ว่าประพจน์ย่อยจะมีค่าความจริงเป็น จริง หรือ เท็จ ก็ตาม เช่น p ∨ ~p , p → p , ~( p ∧ ~p ) , p ↔ p เป็นต้น
การตรวจสอบว่าประพจน์ใดเป็นสัจนิรันดร์ ทำได้ดังนี้
1. ใช้ตารางแสดงค่าความจริง
ตัวอย่าง จงตรวจสอบว่าประพจน์ต่อไปนี้ เป็นสัจนิรันดร์หรือไม่
1. [ ( p → q ) ∧ p ] → q
ใช้ตารางแสดงค่าความจริง
ตัวอย่าง จงตรวจสอบว่าประพจน์ต่อไปนี้ เป็นสัจนิรันดร์หรือไม่
1. [ ( p → q ) ∧ p ] → q
จะเห็นว่ารูปแบบของประพจน์ [ ( p → q ) ∧ p ] → q มีค่าจริงเป็นจริงทุกกรณี
ดังนั้น [ ( p → q ) ∧ p ] → q เป็น สัจนิรันดร์
2. ใช้วิธีการหาข้อขัดแย้ง
ตัวอย่าง จงตรวจสอบว่าประพจน์ต่อไปนี้ เป็นสัจนิรันดร์หรือไม่
1. ( p ∧ q ) → ( q ∨ p )
วิธีทำ สมมุติว่า ( p ∧ q ) → ( q ∨ p ) เป็นเท็จ
จากแผนภาพ จะเห็นว่า ค่าความจริงของ p และ q เป็นได้ทั้งจริงและเท็จ
แสดงว่าไม่มีกรณีที่ทำให้ ( p ∧ q ) → ( q ∨ p ) เป็นเท็จ
ดังนั้น รูปแบบของประพจน์ ( p ∧ q ) → ( q ∨ p ) เป็นสัจนิรันดร์
สัจนิรันดร์
หลักการการสมมุติให้เป็นเท็จ คือ การหาว่าเป็นไปได้มั้ยที่ประพจน์นั้นจะเป็นเท็จ ถ้ามีแม้แต่กรณีเดียวได้ค่าความจริงเป็นเท็จขึ้นมา แสดงว่าไม่เป็นสัจนิรันดร์ แต่ถ้า
เมื่อสมมุติให้เป็นเท็จแล้วเกิดการขัดแย้งขึ้นเสมอ หมายความว่า ประพจน์นั้นย่อมเป็นสัจนิรันดร์
การตรวจสอบสัจนิรันดร์โดยการสมมุติให้เป็นเท็จ
ประพจน์ [(p→q)∧(q→r)]→(p→r) เป็นสัจนิรันตร์หรือไม่
สมมุติให้ประพจน์ที่กำหนดให้เป็จเท็จ ดังนั้นเราจะต้องหาว่าตัวเชื่อมหลักของประพจน์นี้คืออะไร ซึ่งตัวเชื่อมหลักคือ
( (p → q) ∧ (q→ r) ) → ( p → r )
ดังนั้นเราจะกำหนดให้ → ที่วงกลมด้านบน มีค่าความจริงเป็นเท็จ จะได้
( (p → q) ∧ (q→ r) ) → ( p → r )
ตัวอย่าง 1 ประพจน์ [∼(p→q)]→[(∼p↔q)][∼(p→q)]→[(∼p↔q)] เป็นสัจนิรันดร์หรือไม่
วิธีทำ ใช้หลักการเดียวกันกับตัวอย่างแรก จะได้แผนภาพคือ
ตอบ ประพจน์ที่กำหนดให้เป็นสัจนิรันดร์
.
ตัวอย่าง 2 ประพจน์∼p∧(p∨∼(r∧s))]→(∼r∨s)∼p∧(p∨∼(r∧s))]→(∼r∨s)เป็นสัจนิรันดร์หรือไม่
วิธีทำ วาดแผนภาพโดยใช้หลักการเดียวกับตัวอย่างข้อแรก จะได้
จากแผนภาพจะได้ว่า ไม่มีข้อขัดแย้งใด ๆ เกิดขึ้น แสดงว่า ประพจน์ที่กำหนดให้สามารถเกิดกรณีที่เป็นเท็จขึ้นได้ ดังนั้นประพจน์ที่กำหนดให้ไม่เป็นสัจนิรันดร์
ตอบ ประพจน์ ∼p∧(p∨(̸r∧s))]→(∼r∨s)∼p∧(p∨(̸r∧s))]→(∼r∨s) ไม่เป็นสัจนิรันดร์
ตัวอย่าง 3 ตรวจสอบสัจนิรันดร์ โดย การสร้างตารางค่าความจริง
ประพจน์ (p∨q)∧p(p∨q)∧p เป็นสัจนิรันดร์หรือไม่
จากประพจน์ที่กำหนดให้ จะมีประพจน์ย่อยทั้งหมดสองประพจน์ ดังนั้นสร้างตารางที่มีประพจน์สองประพจน์นี้ขึ้นมา
p | q |
จากนั้นให้เติมกรณีที่เป็นไปได้ทั้งหมด ซึ่ง จำนวนกรณีที่เป็นไปได้ทั้งหมดคือ 2n เมื่อ n คือจำนวนประพจน์ วิธีการเติมที่ง่าย และ ได้ครบทุกกรณีโดยไม่ตกหล่น คือ การเติมแบบกลุ่มกลุ่มละครึ่ง
เช่น ในข้อนี้ มีประพจน์ทั้งหมด 2 ประพจน์ ดังนั้นจะมีทั้งหมด 22= 4 กรณี เริ่มแรก เนื่องจากมี 4 กรณี จะได้ว่าครึ่งหนึ่งคือ2 ดังนั้นหลักแรกให้เติม T จำนวนสองตัว และ F จำนวนสองตัว จะได้
p | q |
T | |
T | |
F | |
F |
จากนั้นให้ ให้ดูครึ่งนึงของ 22 จะได้ 11 ดังนั้นในหลักที่ 22 ให้เติม TT กับ FF สลับกันครั้งละหนึ่งตัว จะได้
p | q |
T | T |
T | F |
F | T |
F | F |
เราก็จะได้กรณีที่เป็นไปได้ครบทั้งหมด
จากโจทย์เราต้องการค่าความจริงของประพจน์ (p∨q)∧p(p∨q)∧p จากตารางข้างบนเราไม่มีค่าความจริงของ p∨qp∨q ดังนั้นสร้างหลักของ p∨qp∨q เพิ่ม และเติมค่าความจริงให้เรียบร้อย จะได้
p | q | p∨q |
T | T | T |
T | F | T |
F | T | T |
F | F | F |
ตอนนี้เรามีค่าความจริงครบทั้งหมดแล้ว ดังนั้นให้สร้างหลักสุดท้าย เป็นหลักของ ประพจน์ที่เราต้องการตรวจสอบ จะได้
p | q | p∨q | (p∨q)∧p |
T | T | T | T |
T | F | T | T |
F | T | T | F |
F | F | F | F |
จากตารางด้านบนจะเห็นว่ามีสองกรณีที่ค่าความจริงของประพจน์ที่โจย์ถามนั้นเป็นเท็จ จึง ทำให้ได้ว่า ประพจน์นี้ ไม่เป็นสัจนิรันดร์
ตอบ ประพจน์ที่กำหนดให้ ไม่เป็นสัจนิรันดร์
นิเสธของประพจน์ที่มีตัวบ่งปริมาณ
1. ~∀x[P(x)] สมมูลกับ ∃x[~P(x)]
2. ~∃x[P(x)] สมมูลกับ∀x[~P(x)]
3. ~∀x[~P(x)] สมมูลกับ∃x[P(x)]
4. ~∃x[~P(x)] สมมูลกับ∀x[P(x)]