สภาพสมดุลและสภาพยืดหยุ่น
เนื้อหา
1.สภาพสมดุล
2.สมดุลต่อการเคลื่อนที่
2.1สมดุลของแรงสองแรง
2.2สมดุลของแรง 3 แรง
3.สมดุลต่อการหมุน
ตัวอย่าง 1 โมเมนต์ของแรงที่กระทำกับคาน
ตัวอย่าง 2 โมเมนต์ของแรงที่กระทำกับคานติดกำแพง
ตัวอย่าง 3 โมเมนต์ของแรงที่กระทำกับคานเอียง
ตัวอย่าง 4 โมเมนต์ของแรงที่ทำให้วัตถุล้ม (กำลังจะล้ม)
ตัวอย่าง 5 โมเมนต์ของแรงที่กระทำกับบันได
4.เสถียรภาพของสมดุล
5.สภาพยืดหยุ่น
1.กฎของฮุก
2.กราฟแรงดึง–ระยะยืด
3.ความเค้น
4.ความเครียด
5.มอดูลัสของยัง
สรุป
1.สภาพสมดุลและสภาพยืดหยุ่น
สภาพยืดหยุ่น (elasticity)สมบัติของวัตถุที่เปลี่ยนแปลงรูปร่างได้เมื่อมีแรงกระทำ และจะกลับคืนสู่รูปร่างเดิมได้เมื่อหยุดออกแรงกระทำต่อวัตถุนั้น ตัวอย่างวัสดุที่มีสภาพยืดหยุ่น เช่น ฟองน้ำ
สมบัติสภาพยืดหยุ่นของวัสดุ มีประโยชน์ในงานทางช่างและทางอุตสาหกรรมเป็นอย่างยิ่ง เช่น ในการเลือกวัสดุเพื่อใช้เป็นโครงสร้างอาคารสะพาน หรือชิ้นส่วนของเครื่องกล วิศวกรหรือผู้ออกแบบจะต้องพิจารณาสมบัติสภาพยืดหยุ่นของวัสดุที่จะนำมาใช้ประโยชน์ให้เหมาะสมกับงาน วัสดุหลายชนิดมีทั้งสภาพยืดหยุ่นและสภาพพลาสติกในตัวเอง โดยมีสภาพยืดหยุ่นเมื่อแรงกระทำน้อย ๆ และมีสภาพพลาสติกเมื่อมีแรงกระทำมาก ๆ
สภาพสมดุล (Equilibrium)
สภาพสมดุลอาจแบ่งเป็น 2 ประเภท ได้แก่
1. สมดุลสถิต (Static Equilibrium) เป็นสมดุลของวัตถุขณะอยู่นิ่ง
2. สมดุลจลน์ (Kinetic Equilibrium) เป็นสมดุลของวัตถุที่เคลื่อนที่ด้วยความเร็วคงที่ (a = 0) เมื่อพิจารณาการเคลื่อนที่เป็นหลัก จะมีเงื่อนไขสมดุลอยู่ 2 อย่างคือ
1. สมดุลต่อการเลื่อนที่ คือ วัตถุอยู่นิ่งหรือเคลื่อนที่ด้วยความเร็วคงตัว จะมีค่า

2. สมดุลต่อการหมุน คือ วัตถุมีอัตราการหมุนคงตัวผลรวมของโมเมนต์

หลักที่นำมาใช้ในการคำนวณในกรณีที่วัตถุสมดุลต่อการเลื่อนที่ คือ
1. แตกแรง
–

–


2. ทฤษฎีลามี (กฎของ sine)
แรง 3 แรงมากระทำกันที่จุด ๆ หนึ่ง และอยู่ในภาวะสมดุล อัตราส่วนของแรงต่อ sin ของมุมตรงข้ามย่อมมีค่าเท่ากัน
สภาพยืดหยุ่น (elasticity)
สมบัติสภาพยืดหยุ่นของวัสดุ มีประโยชน์ในงานทางช่างและทางอุตสาหกรรมเป็นอย่างยิ่ง เช่น ในการเลือกวัสดุเพื่อใช้เป็นโครงสร้างอาคารสะพาน หรือชิ้นส่วนของเครื่องกล วิศวกรหรือผู้ออกแบบจะต้องพิจารณาสมบัติสภาพยืดหยุ่นของวัสดุที่จะนำมาใช้ประโยชน์ให้เหมาะสมกับงาน วัสดุหลายชนิดมีทั้งสภาพยืดหยุ่นและสภาพพลาสติกในตัวเอง โดยมีสภาพยืดหยุ่นเมื่อแรงกระทำน้อย ๆ และมีสภาพพลาสติกเมื่อมีแรงกระทำมาก ๆ
1. สภาพยืดหยุ่น (elasticity) คือ สมบัติของวัสดุที่มีการเปลี่ยนแปลงรูปร่าง เมื่อมีแรงมากระทำและสามารถคืนตัวกลับสู่รูปร่างเดิมเมื่อหยุดออกแรงกระทำ A
2. สภาพพลาสติก (plasticity) คือ กรณีวัสดุเปลี่ยนรูปร่างไปอย่างถาวร โดยผิววัสดุไม่มีการฉีกขาดหรือแตกหัก
จากการดึงสปริงให้ยืดออก จะพบว่ากราฟระหว่างขนาดของแรงดึงกับความยาวที่สปริงยืดออก จะมีลักษณะดังรูป
– จุด a คือ ขีดจำกัดการแปรผันตรง (Proportional limit) ซึ่งเป็นตำแหน่งสุดท้ายที่ความยาวสปริงยืดออก แปรผันตรงกับขนาดของแรงดึง
– จุด b คือ ขีดจำกัดสภาพยืดหยุ่น (Elastic limit) ซึ่งเป็นตำแหน่งสุดท้ายที่สปริงยืดออกแล้วกลับสู่สภาพเดิม แต่แรงดึงไม่แปรผันตรงกับระยะยืด
– จุด C คือ จุดแตกหัก (Breaking point) หมายถึงตั้งแต่จุด b เป็นต้นไป ถ้าดึงต่อไปก็ถึงจุด c ซึ่งเป็นจุดที่เส้นวัสดุขาด ความเค้น (Stress) เป็นการวัดแรงเฉลี่ยต่อหน่วยพื้นที่ผิวภายในวัตถุแปรรูปซึ่งมีแรงภายในกระทำ ความเค้นเป็นการวัดความเข้มข้นของแรงภายในซึ่งกระทำระหว่างอนุภาพของวัตถุแปรรูปข้ามพื้นที่ผิวจินตนาการ แรงภายในเหล่านี้เกิดขึ้นระหว่างอนุภาพภายในวัตถุดังที่เป็นแรงปฏิกิริยาต่อแรงภายนอกซึ่งกระทำต่อวัตถุ แรงภายนอกต่างก็เป็นแรงพื้นผิวหรือแรงเนื่องจากน้ำหนัก
หน่วยเอสไอ สำหรับวัดความเค้น คือ ปาสคาล (สัญลักษณ์ Pa) ซึ่งมีค่าเท่ากับหนึ่งนิวตัน (แรง) ต่อหนึ่งตารางเมตร (หน่วยพื้นที่) หน่วยของความเค้นคือหน่วยเดียวกันกับความดัน ซึ่งเป็นการวัดอัตราส่วนระหว่างแรงต่อพื้นที่ผิวเช่นกัน
ความเค้น (Stress) s = F/A เมื่อออกแรงกระทำต่อวัตถุ อัตราส่วนระหว่างแรงกระทำ (F) ต่อ
พื้นที่ (A) เรียกว่า ความเค้น มีหน่วยในระบบเอสไอ เป็น นิวตัน ต่อ ตารางเมตร ความเค้นเป็นปริมาณสเกลาร์ โดยทั่วไปความเค้น มี 2 ชนิด ได้แก่ ความเค้นตามยาว และความเค้นเฉือน
ความเค้นตามยาว (longitudinal stress) แบ่งได้ 2 ชนิด
- ความเค้นแบบดึง (tensile stress) ซึ่งแรง F กระทำต่อวัตถุในลักษณะดึงให้ยืดออก
- ความเค้นแบบอัด (compressive stress) ซึ่งแรง F กระทำต่อวัตถุในลักษณะอัดได้หดสั้นลง
ความเค้นเฉือน (shear stress) นั้น แรง F ที่กระทำต่อวัตถุจะทำให้วัตถุบิดเบือนรูปร่างไปจากเดิม
ความเครียด (Strain) หมายถึงอัตราส่วนระหว่างรูปร่างที่เปลี่ยนไปต่อรูปร่างเดิม มีหน่วยเป็นเท่า หรือไม่มีหน่วย
ความยืดหยุ่นของวัตถุ คือคุณสมบัติการเปลี่ยนรูปร่างของวัตถุเมื่อถูกแรงกระทำ
1.1 เพื่อหาความสัมพันธ์ระหว่างความเค้นและความเครียดตามยาวของวัสดุ พบว่าเมื่อออกแรงดึงเส้นวัสดุโดยไม่ให้ขนาดของแรงดึงเกินขีดจำกัดการแปรผันตรงของวัสดุ ความเค้นตามยาวจะแปรผันตรงกับ ความเครียดตามยาว นั่นคือ อัตราส่วนระหว่างความเค้นตามยาวและความเครียดตามยาวของวัสดุชนิดหนึ่งๆ จะมีค่าคงตัว เรียกค่าคงที่นี้ว่า มอดูลัสของยัง ( Young’s modulus ) แทนด้วยสัญลักษณ์ Y และเขียนได้ว่า…..
– วัสดุชนิดเดียวกันมีมอดูลัสสภาพยืดหยุ่นแบบอื่นๆ ที่นอกเหนือจากมอดูลัสของยัง ได้แก่ มอดูลัสเฉือน (shear modulus) และมอดูลัสเชิงปริมาตร (bulk modulus)
– มอดูลัสสภาพยืดหยุ่น และขีดจำกัดสภาพยืดหยุ่นเป็นสมบัติเฉพาะตัวของวัสดุ มีประโยชน์มากในด้านวิศวกรรม วัสดุที่มีค่ามอดูลัสยืดหยุ่นสูง เป็นวัสดุที่สามารถทนต่อแรงภายนอกได้มาก หรือทำให้เปลี่ยนรูปร่างได้ยาก และวัสดุที่มีความเค้นที่มีขีดจำกัดสภาพยืดหยุ่นสูง จะบอกให้ทราบว่าวัสดุนั้นสามารถทนต่อแรงภายนอกได้มากที่สุด เพื่อให้สามารถกลับคืนสู่สภาพเดิมได้