อนุกรม
บทนิยาม อนุกรม
ถ้า a1, a2, a3, …, an เป็น ลำดับจำกัด ที่มี n พจน์ จะเรียกการเขียนแสดงผลบวกของพจน์ทุกพจน์ของลำดับในรูป
a1 + a2 + a3 + … + an ว่า อนุกรมจำกัด
ทำนองเดียวกัน ถ้า a1, a2, a3, …, an, … เป็น ลำดับอนันต์ จะ เรียกการเขียนแสดงผลบวกในรูป
a1 + a2 + a3 + … + an + … ว่า อนุกรมอนันต์
- ความหมายของอนุกรมและสัญลักษณ์แทนการบวก
กำหนด a1, a2, a3, … , an เป็นลำดับจำกัด
จะได้ a1 + a2 + a3 + … + an เป็นอนุกรมจำกัด
และ เมื่อ a1, a2, a3, …, an, … เป็นลำดับอนันต์
จะได้ a1 + a2 + a3 + … + an + … เป็นอนุกรมอนันต์
จากบทนิยาม จะได้ว่า อนุกรมจำกัดมาจากลำดับจำกัด และอนุกรมอนันต์มาจากลำดับอนันต์
จากอนุกรม a1 + a2 + a3 + … + an + …
เรียก a1 ว่าพจน์ที่ 1 ของอนุกรม
a2 ว่าพจน์ที่ 2 ของอนุกรม
a3 ว่าพจน์ที่ 3 ของอนุกรม
an ว่าพจน์ที่ n ของอนุกรม
อนุกรมแบ่งออกเป็น 2 ประเภทได้แก่
อนุกรมเลคณิต
บทนิยาม อนุกรมเลขคณิต
อนุกรมที่ได้จากลำดับเลขคณิต เรียกว่า อนุกรมเลขคณิต และผลต่างร่วมของลำดับเลขคณิต เป็นผลต่างร่วมของอนุกรมเลขคณิตด้วย
เมื่อ a1, a1 + d, a1 + 2d, …, a1 + (n – 1)d เป็นลำดับเลขคณิต
จะได้ a1 + (a1 + d) + (a1 + 2d) + … + (a1 + (n – 1)d) เป็นอนุกรมเลขคณิต
ซึ่งมี a1 เป็นพจน์แรกของอนุกรม และ d เป็นผลต่างร่วมของอนุกรมเลขคณิต
จากบทนิยาม จะได้ว่า ถ้า a1, a2, a3, …, an เป็น ลำดับเลขคณิต ที่มี n พจน์
จะเรียกการเขียนแสดงผลบวกของพจน์ทุกพจน์ของลำดับในรูป
a1 + a2 + a3 + … + an ว่า อนุกรมเลขคณิต
และผลต่างร่วม ( d ) ของลำดับเลขคณิต เป็นผลต่างร่วมของอนุกรมเลขคณิตด้วย
อนุกรมเรขาคณิต
บทนิยาม อนุกรมเรขาคณิต
อนุกรมที่ได้จากลำดับเรขาคณิต เรียกว่า อนุกรมเรขาคณิต และ อัตราส่วนร่วมของลำดับเรขาคณิต
จะเป็นอัตราส่วนร่วมของ อนุกรมเรขาคณิตด้วย
กำหนด a1, a1r, a1r2, …, a1r n-1 เป็นลำดับเรขาคณิต
จะได้ a1 + a1r + a1r2 + … + a1r n-1 เป็นอนุกรมเรขาคณิต
ซึ่งมี a1 เป็นพจน์แรก และ r เป็นอัตราส่วนร่วมของอนุกรมเรขาคณิต
จากบทนิยาม จะได้ว่า ถ้า a1, a2, a3, …, an เป็น ลำดับเรขาคณิต ที่มี n พจน์
จะเรียกการเขียนแสดงผลบวกของพจน์ทุกพจน์ของลำดับในรูป
a1 + a2 + a3 + … + an ว่า อนุกรมเรขาคณิต
และอัตราส่วนร่วมของลำดับเรขาคณิต จะเป็นอัตราส่วนร่วมของอนุกรมเรขาคณิตด้วย