การหารลงตัว สมภาค ฟังก์ชันในทฤษฎีจำนวน สามจำนวนของพีทาโกรัสและทฤษฎีบทสุดท้ายของแฟร์มา เศษส่วนต่อเนื่องและการประยุกต์ วิทยาการรหัสลับขั้นแนะนำ Divisibility, congruences, functions in number theory, Pythagorean triples and Fermat’s last
theorem, continued fractions and applications, introduction to cryptography
ทฤษฎีจำนวนเบื้องต้น (Number Theory)
สมบัติการหารลงตัว
ทฤษฎีบทที่ 1 กำหนด a, b, c เป็นจำนวนเต็มใดๆ
ถ้า a | b และ b | c แล้วจะได้ a | c
ทฤษฎีบทที่ 2 กำหนด a, b เป็นจำนวนเต็มบวก
ถ้า a | b แล้วจะได้ a ≤ b
ทฤษฎีบทที่ 3 กำหนด a, b, c เป็นจำนวนเต็มใดๆ
ถ้า a | b และ b | c แล้วจะได้ a | bx + cy
เมื่อ x, y เป็นจำนวนเต็มใดๆ
การจำแนกจำนวนเต็มบวกโดยใช้สมบัติการหารลงตัว
1.จำนวนเฉพาะ (Prime Numbers)
บทนิยาม จำนวนเต็ม p จะเป็นจำนวนเฉพาะ ก็ต่อเมื่อ p ≠ 0, p ≠ 1, p ≠ -1 และถ้ามีจำนวนเต็มที่หาร p
ลงตัว จำนวนเต็มนั้นต้องเป็นสมาชิกของ {-1, 1, p, -p}
2.จำนวนประกอบ (Composite Numbers)
บทนิยาม จำนวนเต็ม c เป็นจำนวนเต็มบวกที่มากกว่า 1 จะเป็นจำนวนประกอบ ก็ต่อเมื่อ c ไม่ใช่จำนวนเฉพาะ
นั่นคือสำหรับจำนวนเต็มบวก c ใดๆ c จะเป็นจำนวนประกอบ ก็ต่อเมื่อ มีจำนวนเต็ม m และ n ที่ต่างจาก c
ที่ทำให้ c = mn
ตัวอย่างเช่น
จำนวนที่หาร 2 ลงตัว ได้แก่ {-1, 1, 2, -2} ∴ 2 เป็นจำนวนเฉพาะ
จำนวนที่หาร 3 ลงตัว ได้แก่ {-1, 1, 3, -3} ∴ 3 เป็นจำนวนเฉพาะ
จำนวนที่หาร 4 ลงตัว ได้แก่ {-4, -2, -1, 1, 2, 4} ∴ 4 ไม่เป็นจำนวนเฉพาะ
ขั้นตอนวิธีการหาร
ถ้า a และ b เป็นจำนวนเต็ม โดยที่ b ≠ 0 แล้วจะมี q และ r ซึ่งเป็นจำนวนเต็มที่ทำให้ a = bq + r เมื่อ 0 r |b|
นั่นคือ a เป็นตัวตั้งหารด้วย b ได้ผลหารคือ q และเศษ r
ตัวหารร่วม กำหนด a และ b เป็นจำนวนเต็มที่ไม่เป็นศูนย์ เรียกจำนวนเต็ม c
ซึ่ง c | a และ c | b ว่าเป็น “ตัวหารร่วม” ของ a และ b
ตัวหารร่วมมาก กำหนด a และ b เป็นจำนวนเต็มที่ไม่เป็นศูนย์พร้อมกัน เรียกจำนวนเต็มบวก d ที่มีค่ามากที่สุด ซึ่ง d | a และ d | b ว่าเป็น “ตัวหารร่วมมาก” (ห.ร.ม.) ของ a และ b เขียนแทนด้วยสัญลักษณ์ (a, b)
ตัวอย่างเช่น จงหา ห.ร.ม. ของ 36 และ 48
ตัวหารร่วมของ 36 ได้แก่ ±1, ±2, ±3, ±4, ±6, ±9, ±12, ±18, ±36
ตัวหารร่วมของ 48 ได้แก่ ±1, ±2, ±3, ±4, ±6, ±8, ±12, ±16, ±24, ±48
ตัวหารร่วมที่เป็นบวกของ 36 และ 48 ได้แก่ 1, 2, 3, 4, 6, 12
ตัวหารร่วมที่เป็นบวกของ 36 และ 48 ที่มีค่ามากที่สุด คือ12
นั่นคือ ห.ร.ม. ของ 36 และ 48 คือ 12
จำนวนเฉพาะสัมพัทธ์ จำนวนเต็ม a และ b จะเป็นจำนวนเฉพาะสัมพัทธ์กันก็ต่อเมื่อ (a, b) = 1
ตัวคูณร่วมน้อย กำหนด a และ b เป็นจำนวนเต็มที่ไม่เป็นศูนย์ เรียกจำนวนเต็มบวก c ที่มีค่าน้อยที่สุด ซึ่ง a | c และ b | c ว่าเป็น “ตัวคูณร่วมน้อย” (ค.ร.น.) ของ a และ b เขียนแทนด้วยสัญลักษณ์ [a, b]
ตัวอย่างเช่น จงหา ค.ร.น. ของ 36 และ 24
พหุคูณที่เป็นบวกของ 36 ได้แก่ 36, 72, 108, 144, …
พหุคูณที่เป็นบวกของ 24 ได้แก่ 24, 48, 72, 96, 120, 144, …
พหุคูณร่วมที่เป็นบวกของ 36 และ 24 ได้แก่ 72, 144, …
พหุคูณร่วมที่เป็นบวกของ 36 และ 24 ที่มีค่าน้อยที่สุด คือ 72
นั่นคือ ค.ร.น. ของ 36 และ 24 คือ 72
ทฤษฎีบทสุดท้ายของแฟร์มาต์
เมื่อประมาณกลางสมัยกรุงศรีอยุธยา หรือประมาณ พ.ศ. 2180 มีนักคณิตศาสตร์ชาวฝรั่งเศสคนหนึ่ง ซึ่งมีความรู้ทั้งทางด้านกฎหมาย บทกวี วรรณคดี ตามแบบฉบับของนักปราชญ์ของยุโรปในสมัยนั้น ชื่อ ปีแอร์ เดอ แฟร์มาต์ (Pierre de Fermat) ได้เสนอทฤษฎีทางคณิตศาสตร์ซึ่งนักคณิตศาสตร์ในรุ่นหลังๆ ให้ชื่อว่า “ทฤษฎีบทสุดท้ายของแฟร์มาต์” (Fermat’s Last Theorem) แฟร์มาต์เสนอทฤษฎีบทคล้ายกับการเสนอทฤษฎีทางเรขาคณิต กล่าวคือ เมื่อเสนอแล้วก็ต้องมีการพิสูจน์ว่าข้อเสนอนั้นถูกต้อง แต่ไม่มีใครสามารถพิสูจน์ทฤษฎีบทนี้ได้เป็นเวลากว่า 3 ทศวรรษครึ่ง แม้แต่แฟร์มาต์เองก็ไม่สามารถแสดงบทพิสูจน์ไว้ แฟร์มาต์เขียนไว้ในที่ว่างของกระดาษของหนังสือที่เสนอเรื่องนี้ว่า “ข้าพเจ้าได้พบบทพิสูจน์ที่นับว่ามหัศจรรย์ยิ่ง แต่ไม่สามารถจะเขียนบทพิสูจน์นี้ลงไปในที่ว่างเล็กๆ นี้ได้” แต่ว่าข้อเท็จจริงก็คือ แฟร์มาต์ยังมีชีวิตยืนยาวอยู่จากวันนั้นถึง 28 ปี แต่หาได้แจงบทพิสูจน์นี้ออกมาไม่ นักคณิตศาสตร์รุ่นต่อๆ มาจึงพากันเชื่อว่าแฟร์มาต์ไม่ได้พบบทพิสูจน์ดังที่อ้างอิงแต่อย่างใด
ทฤษฎีบทของแฟร์มาต์ดูเป็นของพื้นๆ แต่การพิสูจน์นั้นไม่พื้นๆ อย่างตัวทฤษฎีเลย เราทราบกันดีว่า สมการ นี้เป็นไปได้ (ก็ทฤษฎีบทปีทาโกรัสนั่นแหละครับ) เพราะสามารถหาจำนวนเต็มที่เป็นบวกอย่างน้อย 1 ชุด เมื่อแทนค่า x, y และ z แล้ว จะสอดคล้องกับสมการนี้ได้ ในกรณีนี้ คือ 3, 4 และ 5 ชุดหนึ่ง เพราะว่า 32 + 42 = 52 ชุดต่อไปคือ 5, 12 และ 13 เพราะว่า 52 + 122 = 132 และอื่นๆ
ทฤษฎีบท (ทฤษฎีบทสุดท้ายของแฟร์มาต์)
เมื่อ n เป็นจำนวนเต็มที่มากกว่า 2 สมการ xn + yn = zn
จะไม่มีจำนวนเต็มบวก x, y และz ที่จะทำให้สมการนี้เป็นจริง
บทพิสูจน์ได้กลายเป็นจุดท้าทายของนักคณิตศาสตร์ทั่วโลกในช่วง 350 ปีที่ผ่านมา มีนักคณิตศาสตร์มือดีหลายต่อหลายคนได้พยายามพิสูจน์ แต่ก็ไม่ประสบความสำเร็จ (เหมือนสัจพจน์ข้อที่ 5 ของยุคลิดเลย) แต่ความพยายามของนักคณิตศาสตร์เหล่านั้นบางท่านได้ผลพลอยได้อยู่ที่ได้เปิดแขนงของคณิตศาสตร์ใหม่ๆ ขึ้นมา (นี่ก็เหมือน)
เอกสารอ้างอิง
เฉลียว มณีเลิศ. (2536, กรกฎาคม – ธันวาคม). “อวสานทฤษฎีบทสุดท้ายของแฟร์มาต์,” สสวท. 21(83) : 42 – 43.
ณรงค์ ปั้นนิ่ม. (2531). ทฤษฎีจำนวน = Theory of Number. กรุงเทพฯ : ภาควิชาคณิตศาสตร์คณะวิทยาศาสตร์ มหาวิทยาลัยศรีนครินทรวิโรฒ ประสานมิตร.
มหาวิทยาลัยศรีนครินทรวิโรฒ บางเขน. ภาควิชาคณิตศาสตร์. (2530). ประวัตินักคณิตศาสตร์. กรุงเทพฯ : สมาคมคณิตศาสตร์แห่งประเทศไทยในพระบรมราชูปถัมภ์.
Bruno, Leonard C. (1999). Math and Mathematicians : the History of Math Discoveries Around the World. Detroit : U – X – L.
O’Connor, J. J. and Robertson, E. F. (1996). Fermat’s last theorem. (Online). Available: URL http://www-history.mcs.st-andrews.ac.uk/history/HistTopics/
Fermat’s_last_theorem.html
Solving Fermat: Andrew Wiles. (2000, November). (Online). Available: URL http://www.pbs.org/wgbh/nova/proof/wiles.html