คลื่นแม่เหล็กไฟฟ้า
ทฤษฎีแม่เหล็กไฟฟ้าของแมกซ์เวลล์และการทดลองของแฮทซ์.
ในช่วงเวลาก่อนศตวรรษที่ 19 มีการทดลองที่ยืนยันได้ว่าแสงมีพฤติกรรมเป็นคลื่น แต่ไม่ทราบว่าเป็นคลื่นประเภทใด และอะไรที่กำลังสั่นอยู่ในคลื่นแสงนั้น
ในช่วงกลางศตวรรษที่ 19 นักฟิสิกส์ชาวสกอตชื่อ เจมส์ คลาร์ก แมกซ์เวลล์ (James Clerk Maxwell, ค.ศ. 1831 -1879) ได้ศึกษาสภาวะไฟฟ้าและแม่เหล็กรวมไปถึงสิ่งที่ยังเป็นข้อสงสัย จนในที่สุดได้พัฒนาทฤษฎีแม่เหล็กไฟฟ้า ซึ่งเป็นการรวมปรากฏการณ์ทางไฟฟ้าและแม่เหล็กเป็นทฤษฎีหนึ่งเดียวที่ยิ่งใหญ่และสวยงาม โดยแมกซ์เวลล์ได้แสดงให้เห็นว่าปรากฏการณ์ทางไฟฟ้าและแม่เหล็กทั้งหมด
ธรรมชาติของ “แสง” แสดงความประพฤติเป็นทั้ง “คลื่น” และ “อนุภาค” เมื่อเรากล่าวถึงแสงในคุณสมบัติความเป็นคลื่น เราเรียกว่า “คลื่นแม่เหล็กไฟฟ้า” (Electromagnetic waves) ซึ่งประกอบด้วยสนามแม่เหล็กและสนามไฟฟ้าทำมุมตั้งฉาก และเคลื่อนที่ไปในอวกาศด้วยความเร็ว 300,000,000 เมตร/วินาที เมื่อเรากล่าวถึงแสงในคุณสมบัติของอนุภาค
เราเรียกว่า “โฟตอน” (Photon) เป็นอนุภาคที่ไม่มีมวล แต่เป็นพลังงาน
ความยาวคลื่น (wavelength), ความถี่ (frequency) และความเร็วแสง (speed)
λ = c / f
|
ความยาวคลื่น = ความเร็วแสง / ความถี่
ความยาวคลื่น (λ ) = ระยะห่างระหว่างยอดคลื่น มีหน่วยเป็นเมตร (m)
ความถี่ (f) = จำนวนคลื่นที่เคลื่อนที่ผ่านจุดที่กำหนด ในระยะเวลา 1 วินาที มีหน่วยเป็นเฮิรทซ์ (Hz)
ความเร็วแสง (c) = 300,000,000 เมตร/วินาที (m/s)
ตัวอย่างที่ 1: คลื่นแม่เหล็กไฟฟ้าจากดวงอาทิตย์ มีความยาวคลื่น 500 นาโนเมตร (0.0000005 เมตร) จะมีความถี่เท่าไร (1 เมตร = 1,000,000,000 นาโนเมตร) λ = c / f f = c / λ λ = [ 300,000,000 เมตร / วินาที ] λ = 6 x 10^14 เฮิรทซ์ |
ประเภทของคลื่นแม่เหล็กไฟฟ้า
แสงที่ตามองเห็น (Visible light) เป็นเพียงส่วนหนึ่งของคลื่นแม่เหล็กไฟฟ้า ในช่วงซึ่งประสาทตาของมนุษย์สามารถสัมผัสได้ ซึ่งมีความยาวคลื่นอยู่ระหว่าง 400 – 700 นาโนเมตร (1 เมตร = 1,000,000,000 นาโนเมตร) หากนำแท่งแก้วปริซึม (Prism) มาหักเหแสงอาทิตย์ เราจะเห็นว่าแสงสีขาวถูกหักเหออกเป็นสีม่วง คราม น้ำเงิน เขียว เหลือง แสด แดง คล้ายกับสีของรุ้งกินน้ำ เรียกว่า “สเปคตรัม” (Spectrum) แสงแต่ละสีมีความยาวคลื่นแตกต่างกัน สีม่วงมีความยาวคลื่นน้อยที่สุด
สีแดงมีความยาวคลื่นมากที่สุด
นอกจากแสงที่ตามองเห็นแล้วยังมีคลื่นแม่เหล็กไฟฟ้าชนิดอื่นๆ ได้แก่ รังสีที่มีความยาวคลื่นถัดจากสีแดงออกไป
เราเรียกว่า “รังสีอินฟราเรด” หรือ “รังสีความร้อน” เรามองไม่เห็นรังสีอินฟราเรด แต่เราก็รู้สึกถึงความร้อนได้ สัตว์บางชนิด เช่น งู มีประสาทสัมผัสรังสีอินฟราเรด มันสามารถทราบตำแหน่งของเหยื่อได้ โดยการสัมผัสรังสีอินฟราเรดซึ่งแผ่ออกมาจากร่างกายของเหยื่อ รังสีที่มีความยาวคลื่นน้อยกว่าแสงสีม่วงเรียกว่า “รังสีอุลตราไวโอเล็ต” แม้ว่าเราจะมองไม่เห็น แต่เมื่อเราตากแดดนานๆ ผิวหนังจะไหม้ด้วยรังสีชนิดนี้ นอกจากรังสีอุลตราไวโอเล็ตและรังสีอินฟราเรดแล้ว ยังมีคลื่นแม่เหล็กไฟฟ้าประเภทอื่นๆ ซึ่งเรียงลำดับตามความยาวคลื่นได้ดังนี้
รังสีแกมมา (Gamma ray) เป็นคลื่นแม่เหล็กไฟฟ้าที่มีความยาวคลื่นน้อยกว่า 0.01 นาโนเมตร โฟตอนของรังสีแกมมามีพลังงานสูงมาก กำเนิดจากแหล่งพลังงานนิวเคลียร์ เช่น ดาวระเบิด หรือ ระเบิดปรมาณู เป็นอันตรายมากต่อสิ่งมีชีวิต
รังสีเอ็กซ์ (X-ray) มีความยาวคลื่น 0.01 – 1 นาโนเมตร มีแหล่งกำเนิดในธรรมชาติมาจากดวงอาทิตย์ เราใช้รังสีเอ็กซ์ในทางการแพทย์ เพื่อส่องผ่านเซลล์เนื้อเยื่อ แต่ถ้าได้ร่างกายได้รับรังสีนี้มากๆ ก็จะเป็นอันตราย
รังสีอุลตราไวโอเล็ต (Ultraviolet radiation) มีความยาวคลื่น 1 – 400 นาโนเมตร รังสีอุลตราไวโอเล็ตมีอยู่ในแสงอาทิตย์ เป็นประโยชน์ต่อร่างกาย แต่หากได้รับมากเกินไปก็จะทำให้ผิวไหม้ และอาจทำให้เกิดมะเร็งผิวหนัง
แสงที่ตามองเห็น (Visible light) มีความยาวคลื่น 400 – 700 นาโนเมตร พลังงานที่แผ่ออกมาจากดวงอาทิตย์ ส่วนมากเป็นรังสีในช่วงนี้ แสงแดดเป็นแหล่งพลังงานที่สำคัญของโลก และยังช่วยในการสังเคราะห์แสงของพืช
รังสีอินฟราเรด (Infrared radiation) มีความยาวคลื่น 700 นาโนเมตร – 1 มิลลิเมตร โลกและสิ่งชีวิตแผ่รังสีอินฟราเรดออกมา ก๊าซเรือนกระจก เช่น คาร์บอนไดออกไซด์ และไอน้ำ ในบรรยากาศดูดซับรังสีนี้ไว้ ทำให้โลกมีความอบอุ่น เหมาะกับการดำรงชีวิต
คลื่นไมโครเวฟ (Microwave) มีความยาวคลื่น 1 มิลลิเมตร – 10 เซนติเมตร ใช้ประโยชน์ในด้านโทรคมนาคมระยะไกล นอกจากนั้นยังนำมาประยุกต์สร้างพลังงานในเตาอบอาหาร
คลื่นวิทยุ (Radio wave) เป็นคลื่นแม่เหล็กไฟฟ้าที่มีความยาวคลื่นมากที่สุด คลื่นวิทยุสามารถเดินทางผ่านชั้นบรรยากาศได้ จึงถูกนำมาใช้ประโยชน์ในด้านการสื่อสาร โทรคมนาคม
สเปคตรัม
นักดาราศาสตร์ทำการศึกษาเทห์วัตถุท้องฟ้า โดยการศึกษาคลื่นแม่เหล็กไฟฟ้าที่วัตถุแผ่รังสีออกมา สเปคตรัมของคลื่นแม่เหล็กไฟฟ้าทำให้เราทราบถึงคุณสมบัติทางกายภาพของดวงดาว อันได้แก่ อุณหภูมิ และพลังงาน (นอกจากนั้นยังบอกถึง ธาตุ องค์ประกอบทางเคมี และทิศทางการเคลื่อนที่ของเทห์วัตถุ แต่คุณสมบัติเหล่านี้ อยู่นอกเหนือที่จะกล่าวในที่นี้)
สเปคตรัมของแสงอาทิตย์ในภาพที่ 3 แสดงให้เห็นถึงระดับความเข้มของพลังงานในช่วงความยาวคลื่นต่างๆ จะเห็นได้ว่า ดวงอาทิตย์มีความเข้มของพลังงานมากที่สุดที่ความยาวคลื่น 500 นาโนเมตร เส้นสีเข้มบนแถบสเปคตรัม หรือ รอยหยักบนเส้นกราฟ แสดงให้เห็นว่า มีธาตุไฮโดรเจนอยู่ในชั้นบรรยากาศของดวงอาทิตย์ ดาวแต่ละดวงมีสเปคตรัมไม่เหมือนกัน ฉะนั้นสเปคตรัมจึงเป็นเสมือนเส้นลายมือของดาว
คลื่นแม่เหล็กไฟฟ้า (Electromagnetic Radiation)
คลื่นแม่เหล็กไฟฟ้าเป็นรูปแบบหนึ่งการถ่ายเทพลังงาน จากแหล่งที่มีพลังงานสูงแผ่รังสีออกไปรอบๆ โดยมีคุณสมบัติที่เกี่ยวข้องกับคลื่นแม่เหล็กไฟฟ้า คือ ความยาวคลื่น (l) โดยอาจวัดเป็น nanometer (nm) หรือ micrometer (mm) และ ความถี่คลื่น (f) ซึ่งจะวัดเป็น hertz (Hz) โดยคุณสมบัติทั้งสองมีความสัมพันธ์ผ่านค่าความเร็วแสง ในรูป c = fl
พลังงานของคลื่น พิจารณาเป็นความเข้มของกำลังงาน หรือฟลักซ์ของการแผ่รังสี (มีหน่วยเป็น พลังงานต่อหน่วยเวลาต่อหน่วยพื้นที่ = Joule s-1 m-2 = watt m-2) ซึ่งอาจวัดจากความเข้มที่เปล่งออกมา (radiance) หรือความเข้มที่ตกกระทบ (irradiance)
จากภาพเป็นการแสดงช่วงความยาวคลื่นของคลื่นแม่เหล็กไฟฟ้า ซึ่งเครื่องมือวัด (Sensor) ของดาวเทียมหรืออุปกรณ์ตรวจวัดจะออกแบบมาให้เหมาะสมกับช่วงความยาวของคลื่นแม่เหล็กไฟฟ้าในช่วงคลื่นต่างกัน เช่น
- ช่วงรังสีแกมมา (gamma ray : l < 0.1 nm) และช่วงรังสีเอ็กซ์ (x-ray : 0.1 nm < l < 300 nm) เป็นช่วงที่มีพลังงานสูง แผ่รังสีจากปฏิกิริยานิวเคลียร์ หรือจากสารกัมมันตรังสี
- ช่วงอัลตราไวโอเลต เป็นช่วงที่มีพลังงานสูง เป็นอันตรายต่อเซลสิ่งมีชีวิต
- ช่วงคลื่นแสง เป็นช่วงคลื่นที่ตามนุษย์รับรู้ได้ ประกอบด้วยแสงสีม่วง ไล่ลงมาจนถึงแสงสีแดง
- ช่วงอินฟราเรด เป็นช่วงคลื่นที่มีพลังงานต่ำ ตามนุษย์มองไม่เห็น จำแนกออกเป็น อินฟราเรดคลื่นสั้น และอินฟราเรดคลื่นความร้อน
- Near Infrared (NIR) ความยาวคลื่นจะอยู่ในช่วงระหว่าง 0.7 ถึง 1.5 µm.
- Short Wavelength Infrared (SWIR) ความยาวคลื่นจะอยู่ในช่วงระหว่าง 1.5 ถึง 3 µm.
- Mid Wavelength Infrared (MWIR) ความยาวคลื่นจะอยู่ในช่วงระหว่าง 3 ถึง 8 µm.
- Long Wavelength Infrared (LWIR) ความยาวคลื่นจะอยู่ในช่วงระหว่าง 8 ถึง 15 µm.
- Far Infrared (FIR) ความยาวคลื่นจะมากกว่า 15 µm.
- ช่วงคลื่นวิทยุ (radio wave) เป็นช่วงคลื่นที่เกิดจากการสั่นของผลึกเนื่องจากได้รับสนามไฟฟ้า หรือเกิดจากการสลับขั้วไฟฟ้า สำหรับในช่วงไมโครเวฟ มีการให้ชื่อเฉพาะ เช่น
- P band ความถี่อยู่ในช่วง 0.3 – 1 GHz (30 – 100 cm)
- L band ความถี่อยู่ในช่วง 1 – 2 GHz (15 – 30 cm)
- S band ความถี่อยู่ในช่วง 2 – 4 GHz (7.5 – 15 cm)
- C band ความถี่อยู่ในช่วง 4 – 8 GHz (3.8 – 7.5 cm)
- X band ความถี่อยู่ในช่วง 8 – 12.5 GHz (2.4 – 3.8 cm)
- Ku band ความถี่อยู่ในช่วง 12.5 – 18 GHz (1.7 – 2.4 cm)
- K band ความถี่อยู่ในช่วง 18 – 26.5 GHz (1.1 – 1.7 cm)
- Ka band ความถี่อยู่ในช่วง 26.5 – 40 GHz (0.75 – 1.1 cm
ความยาวช่วงคลื่นและความเข้มของคลื่นแม่เหล็กไฟฟ้า ขึ้นอยู่กับอุณหภูมิของแหล่งกำเนิดคลื่นแม่เหล็กไฟฟ้า เช่น ดวงอาทิตย์ มีอุณหภูมิ 6,000 K จะแผ่พลังงานในช่วงคลื่นแสงมากที่สุด วัตถุต่างๆ บนพื้นโลกส่วนมากจะมีอุณหภูมิประมาณ 300 K จะแผ่พลังงานในช่วงอินฟราเรดความร้อนมากที่สุด คลื่นแม่เหล็กไฟฟ้าเมื่อเดินทางผ่านชั้นบรรยากาศ จะถูกโมเลกุลอากาศ และฝุ่นละอองในอากาศดูดกลืน และขวางไว้ทำให้คลื่นกระเจิงคลื่นออกไป คลื่นส่วนที่กระทบถูกวัตถุจะสะท้อนกลับ และเดินทางผ่านชั้นบรรยากาศมาตกสู่อุปกรณ์วัดคลื่น
เนื่องจากวัตถุต่างๆ มีคุณสมบัติการสะท้อนคลื่นแม่เหล็กไฟฟ้าที่ช่วงคลื่นต่างๆ ไม่เหมือนกัน ดังนั้นเราจึงสามารถใช้คลื่นแม่เหล็กไฟฟ้าในการสำรวจจากระยะไกลได้ รูปต่อไปนี้แสดงลักษณะการสะท้อนแสงเปรียบเทียบระหว่างวัตถุต่างชนิดกันที่ช่วงคลื่นต่างๆ กัน ความสามารถในการสะท้อนแสงของวัตถุต่างๆ บนพื้นโลกสามารถสรุปได้ดังนี้
- น้ำสะท้อนแสงในช่วงแสงสีน้ำเงินได้ดี และดูดกลืนคลื่นในช่วงอื่นๆ และให้สังเกตว่าน้ำจะดูดกลืนคลื่น IR ช่วง 0.91 mm ในช่วงนี้ได้ดีมาก
- ดินสะท้อนแสงในช่วงคลื่นแสงได้ดีทุกสี
- พืชสะท้อนแสงช่วงสีเขียวได้ดี และสะท้อนช่วงอินฟราเรดได้ดีกว่าน้ำและดินมาก