คลื่นแม่เหล็กไฟฟ้า
ทฤษฎีคลื่นแม่เหล็กไฟฟ้าของแมกซ์เวลล์และการทดลองของเฮิรตซ์
แมกซ์เวลล์ได้รวบรวมกฎต่างๆที่เกี่ยวกับแม่เหล็กไฟฟ้า มาสรุปเป็นทฤษฎีโดยนำเสนอในรูปของสมการคณิตศาสตร์ ซึ่งแมกซ์เวลล์ใช้ทำนายว่าสนามไฟฟ้าที่เปลี่ยนแปลงตามเวลา ทำให้เกิดสนามแม่เหล็ก และในขณะเดียวกันสนามแม่เหล็กที่เปลี่ยนแปลงตามเวลาก็ทำให้เกิดสนามไฟฟ้าด้วย โดยสนามไฟฟ้าและสนามแม่เหล็กต่างก็มีทิศตั้งฉากกัน แมกซ์เวลล์ยังทำนายอีกว่ามีคลื่นแม่เหล็กไฟฟ้าเกิดขึ้น จากการเหนี่ยวนำอย่างต่อเนื่องระหว่างสนามแม่เหล็กและสนามแม่เหล็ก ทำให้สนามไฟฟ้าและสนามแม่เหล็กเคลื่อนที่ออกจากแหล่งกำเนิดคลื่นแม่เหล็กไฟฟ้าเคลื่อนที่ไปในสุญญากาศด้วยอัตราเร็วเท่ากับอัตราเร็วของแสง แมกซ์เวลล์จึงเสนอความคิดว่าแสงเป็นคลื่นแม่เหล็กไฟฟ้าที่มีความถี่ช่วงหนึ่ง คำทำนายนี้ได้รับการยืนยันว่าเป็นจริงโดยการทดลองของเฮิรตซ์
ลวดเหนี่ยวนำในการทดลองของเฮิรตซ์
การรับคลื่นแม่เหล็กฟ้าของเฮิรตซ์
การรับคลื่นแม่เหล็กฟ้าของเฮิรตซ์
เฮิรตซ์อธิบายการเกิดประกายไฟฟ้าที่ช่องแคบ D ดังนี้ ขณะที่เกิดแรงเคลื่อนไฟฟ้าสูงช่วงสั้นๆ ในขดลวด B ความต่างศักย์ซึ่งมีความถี่สูงมากจะเกิดระหว่างแผ่นราบทั้งสองที่ต่อไว้ ความถี่นี้สามารถควบคุมได้ด้วยขนาดของแผ่นราบและช่องว่าง G ในการทดลองทั่วไป ความถี่จะมีค่าประมาณ 108 เฮิรตซ์ ความต่างศักย์แปรเปลี่ยนที่เกิดขึ้นช่วงเวลาหนึ่งและมีความถี่สูง จะทำให้เกิดสนามไฟฟ้าและกระแสไฟฟ้าสลับเคลื่อนที่ผ่านช่อง G เป็นประกายไฟฟ้าดังที่กล่าวแล้ว ประการไฟฟ้าที่เกิดขึ้นนั้น เกิดจากกระแสไฟฟ้ากระโดดข้ามช่องแคบกลับไปกลับมาหลายๆครั้ง เพราะสนามไฟฟ้าระหว่างช่อง G ที่เปลี่ยนแปลง เหนี่ยวนำให้เกิดสนามแม่เหล็กที่เปลี่ยนแปลง การเปลี่ยนแปลงสนามแม่เหล็กและสนามไฟฟ้านี้จึงทำให้เกิดคลื่นแม่เหล็กไฟฟ้าแผ่ออกจากแหล่งกำเนิด โดยความถี่ของคลื่นมีค่าเท่ากับความถี่ของกระแสไฟฟ้าที่กระโดดข้ามช่องแคบไปมา เมื่อคลื่นแม่เหล็กไฟฟ้าเคลื่อนที่ผ่านลวดตัวนำวงกลมในรูป ซึ่งมีรัศมีและขนาดช่องแคบ D ที่เหมาะสม จะทำให้เกิดความต่างศักย์เปลี่ยนค่าที่มีความถี่สูงเท่ากับความถี่ของคลื่นที่ช่องแคบ D นี้ จึงทำให้เกิดสนามไฟฟ้าความเข้มสูงมาก จนอากาศระหว่างช่องแคบแตกตัวเป็นไอออน ทำให้มีกระแสฟ้าผ่านช่องแคบนี้เป็นประกายไฟฟ้า
คลื่นแม่เหล็กไฟฟ้า(Electromagnetic disturbance)
เกิดจากการรบกวนทางแม่เหล็กไฟฟ้า (Electromagnetic disturbance) โดยการท าให้สนามไฟฟ้าหรือสนามแม่เหล็กมีการเปลี่ยนแปลง เมื่อสนามไฟฟ้ ามีการเปลี่ยนแปลงจะเหนี่ยวน าให้เกิดสนามแม่เหล็ก
หรือถ้าสนามแม่เหล็กมีการเปลี่ยนแปลงก็จะเหนี่ยวนำให้เกิดสนามไฟฟ้าคลื่นแม่เหล็กไฟฟ้าเป็นคลื่นตามขวาง ประกอบด้วยสนามไฟฟ้าและสนามแม่เหล็กที่มีการสั่นใน แนวตั้งฉากกัน และอยู่บนระนาบตั้งฉากกับทิศการเคลื่อนที่ของคลื่น
คลื่นโทรทัศน์และไมโครเวฟมีความถี่ช่วง 108 – 1012 Hz มีประโยชน์ในการสื่อสาร แต่จะไม่สะท้อนที่ชั้นบรรยากาศไอโอโนสเฟียร์ แต่จะทะลุผ่านชั้นบรรยากาศไปนอกโลก ในการถ่ายทอดสัญญาณโทรทัศน์จะต้องมีสถานีถ่ายทอดเป็นระยะ ๆ เพราะสัญญาณเดินทางเป็นเส้นตรง และผิวโลกมีความโค้ง ดังนั้นสัญญาณจึงไปได้ไกลสุดเพียงประมาณ 80 กิโลเมตรบนผิวโลก อาจใช้ไมโครเวฟนำสัญญาณจากสถานีส่งไปยังดาวเทียม แล้วให้ดาวเทียมนำสัญญาณส่งต่อไปยังสถานีรับที่อยู่ไกล ๆ เนื่องจากไมโครเวฟจะสะท้อนกับผิวโลหะได้ดี จึงนำไปใช้ประโยชน์ในการตรวจหาตำแหน่งของอากาศยาน เรียกอุปกรณ์ดังกล่าวว่า เรดาร์ โดยส่งสัญญาณไมโครเวฟออกไปกระทบอากาศยาน และรับคลื่นที่สะท้อนกลับจากอากาศยาน ทำให้ทราบระยะห่างระหว่างอากาศยานกับแหล่งส่งสัญญาณไมโครเวฟได้
ความถี่ 108 – 1012 เฮิรตซ์
• ไม่สะท้อนกับบรรยากาศชั้นไอโอโนสเฟียร์จึงส่งเป็นเส้นตรงแล้วใช้สถานีถ่ายทอดเป็นระยะ
หรือใช้คลื่นไมโครเวฟนำสัญญาณโทรทัศน์ไป ยังดาวเทียม
• คลื่นโทรทัศน์มีความยาวคลื่นสั้นจึงเลี้ยวเบนผ่านสิ่งกีดขวางใหญ่ๆ เช่น รถยนต์ หรือเครื่องบินไม่ได้
ดังนั้นจะเกิดการสะท้อนกับเครื่องบิน กลับมาแทรกสอดกับคลื่นเดิม ทำให้เกิดคลื่นรบกวนได้
• ไมโครเวฟสะท้อนโลหะได้ดี จึงใช้ทำเรดาห์
คุณสมบัติของคลื่นแม่เหล็กไฟฟ้า
คลื่นแม่เหล็กไฟฟ้าเป็นคลื่นที่เคลื่อนที่โดยไม่อาศัยตัวกลางจึงสามารถเคลื่อนที่ในสุญญากาศได้
การตรวจวัดคลื่นเทระเฮิรตซ์ (THz sensing)
นับว่าเป็นเรื่องยากที่จะสามารถตรวจวัดคลื่นนี้ได้ เนื่องจากคลื่นนี้มีความถี่สูงเกินไปที่จะใช้อุปกรณ์อิเล็กทรอนิกส์ในการตรวจสอบ แต่คลื่นนี้ก็มีพลังงานโฟตอนต่ำกว่าแสงที่มองเห็นได้ ดังนั้นการตรวจวัดคลื่นเทระเฮิรตซ์ จึงต้องคิดอุปกรณ์ใหม่ที่สามารถตรวจวัดช่วงคลื่นนี้ได้ แนวทางการตรวจวัดคลื่นเทระเฮิรตซ์ แบ่งเป็น 3 ประเภท คือ
– การตรวจวัดแบบความร้อน (Bolometric (thermal) detection) เมื่อคลื่นเทระเฮิตรซ์ผ่านอุปกรณ์ตรวจจับคลื่นในช่วง THz จะมีการดูดกลื่นพลังงานของคลื่นไว้ ทำให้อุปกรณ์มีอุณหภูมิเพิ่มขึ้น
– การตรวจวัดแบบคลื่น (Wave detection) การตรวจวัดวิธีนี้ จำเป็นต้องใช้อุปกรณ์ตรวจวัด (detector) ที่มีความเร็วสูงในการตรวจวัดด้วยเวลาคงตัวในหน่วยนาโนวินาที (ns) และต้องวัดที่อุณหภูมิห้อง
– การตรวจวัดแบบควอนตัม (Quantum detection) หรือการตรวจวัดอนุภาค โดยจะตรวจจับโฟตอนของคลื่นเทระเฮิรตซ์นั่นเอง
เมื่อเราทราบวิธีตรวจวัดคลื่นเทระเฮิรตซ์กันแล้ว ต่อมาเราจะมาดูเทคโนโลยีที่ใช้คลื่นนี้กัน
เทคโนโลยีทางภาพ (THz imaging)
เนื่องจากคลื่นแม่เหล็กไฟฟ้ามีสมบัติทวิภาคของคลื่น คือสามารถเป็นได้ทั้งอนุภาคและคลื่น ซึ่งอนุภาคของคลื่นแม่เหล็กไฟฟ้า เรียกว่า โฟตอน โดยพลังงานโฟตอนของคลื่นเทระเฮิรตซ์อยู่ในช่วง 1 – 100 meV(1 eV = 1.6 x 10-19 J) โดยช่วงพลังงานนี้สามารถใช้ได้กับโมเลกุลและวัสดุหลายประเภท สมบัตินี้สามารถนำไปประยุกต์ใช้กับเทคโนโลยีทางภาพ (เช่นเดียวกับฟิล์ม X – ray) การฉายคลื่นนี้ผ่านไปยังวัตถุ แล้วจับภาพของการกระจายของคลื่นแสง เปรียบเทียบกับการถ่ายภาพด้วยรังสีเอกซ์ ปรากฏว่าคลื่นมีอันตรายน้อยกว่า และไม่ทำให้เกิดความเสียหายต่อวัตถุหรือโมเลกุลมากนัก เนื่องจากพลังงานโฟตอนของคลื่นเทระเฮิรตซ์ น้อยกว่าพลังงานโฟตอนของรังสีเอกซ์ ประโยชน์ในส่วนนี้ของคลื่นเทระเฮิรตซ์สามารถนำไปใช้ในการวินิจฉัยทางการแพทย์ การตรวจสอบความปลอดภัย การจับภาพทางดาราศาสตร์ และการวิเคราะห์วัสดุหรือโมเลกุลชีวภาพต่าง ๆ โดยไม่ทำลายโมเลกุลเหล่านั้น
อย่างไรก็ตามการใช้คลื่นเทระเฮิรตซ์ในเทคโนโลยีทางภาพก็มีปัญหาที่ยังต้องพัฒนาและปรับปรุงต่อไป นั่นก็คือความละเอียดของภาพที่ได้ยังต่ำ เนื่องจากความละเอียดของการจับภาพด้วยคลื่นแม่เหล็กไฟฟ้าถูกจำกัดด้วยความยาวคลื่นในการเลี้ยวเบนของคลื่น (ความยาวคลื่นของคลื่นเทระเฮิรตซ์สั้นมากเมื่อเทียบกับ Visible light และ Ultra violet) ดังนั้นนักวิทยาศาสตร์จึงต้องพัฒนาการจับภาพให้มีความละเอียดสูง โดยเทคนิคที่ใช้พัฒนาการจับภาพทางด้านนี้ ได้แก่ การฝังตัวของเลนส์ในของแข็ง (Solid immersion THz lens) กล้องเทระเฮิรตซ์ (THz camera) และการจับภาพเทระเฮิรตซ์แบบสนามใกล้ (Near-field THz imaging)
เทระเฮิรตซ์สเปกโทรสโกปี (THz spectroscopy)
เนื่องจากพลังงานโฟตอนและคาบของคลื่นเทระเฮิรตซ์ความถี่ 1 THz มีค่าเป็น 4 meV และ 1 ps ตามลำดับ ซึ่งสมบัติของวัสดุที่สำคัญหลาย ๆ อย่าง ก็อยู่ในช่วงพลังงานและคาบนี้เช่นกัน เช่น ช่องว่างพลังงานของตัวนำยิ่งยวด (energy gap of superconductor) ระดับพลังงานของสารเจือปนในสารกึ่งตัวนำ (impurity level of semiconductor) พลังงานโฟนอน (phonon energy) ระดับระยะห่างของ Landau (Landau level separation) และระยะห่างของระดับพลังงานของอิเล็กตรอนที่ถูกจำกัดในสารกึ่งตัวนำมิติน้อย
นอกจากนี้ การวิจัยและพัฒนาอุปกรณ์ที่ใช้คลื่นเทระเฮิรตซ์ ยังสามารถนำไปใช้ประโยชน์ในด้านอื่น ๆ อีกด้วย เช่น การวิเคราะห์ความถี่จำเพาะของโพลิเมอร์ และโมเลกุลชีวภาพ รวมถึงการแผ่รังสีคลื่นเทระเฮิรตซ์จากเคหวัตถุ ซึ่งจะนำไปสู่ความเข้าใจในเอกภพ ฉะนั้น เทระเฮิรตซ์สเปกโทรสโกปี จึงได้ถูกประยุกต์ในหลายสาขา ได้แก่ ฟิสิกส์ เคมี ชีววิทยา และดาราศาสตร์
เรียบเรียงโดย
นราภรณ์ ตั้งหทัยทิพย์
- [1] Christopher Crockett. What is the electromagnetic spectrum? สืบค้นจาก http://earthsky.org/space/what-is-the-electromagnetic-spectrum. 27 มิถุนายน 2560
- [2] Yukio Kawano. Terahertz waves: a tool for condensed matter, the life sciences and astronomy. Contemporary Physics, 2013 Vol. 54, No. 3, 143 – 165
- [3] S Withington (2004). Terahertz astronomical telescopes and instrumentation. Phil. Trans. R. Soc. Lond. A (2004) 362, 395–402
- [4] J F Federici1 et al (2005).THz imaging and sensing for security applications—explosives, weapons and drugs. Semicond. Sci. Technol. 20 (2005) S266–S280
- [5] Terahertz Radiation. สืบค้นจาก https://en.wikipedia.org/wiki/Terahertz_radiation. 27 มิถุนายน 2560