สมบัติของดีเทอร์มิแนนต์
ดีเทอร์มิแนนต์ (Determinant) คือ ค่าของตัวเลขที่สอดคล้องกับเมทริกซ์จัตุรัส ถ้า A เป็นเมทริกซ์จัตุรัส จะเขียนแทนดีเทอร์มิแนนต์ของ A ด้วย det(A) หรือ โดยทั่วไปการหาค่าดีเทอร์มิแนนต์ที่เจอในข้อสอบจะไม่เกินเมทริกซ์ 3×3 เพราะถ้ามากกว่า 3 แล้ว จะเริ่มมีความยุ่งยาก ค่าของดีเทอร์มิแนนต์จะเป็นจำนวนจริงและมีเพียงค่าเดียวเท่านั้นที่จะสอดคล้องกับเมทริกซ์จัตุรัส
ดีเทอร์มิแนนต์กระจายการคูณได้ det(AB)=det(A)det(B)
แต่
แต่
det(A+B) อาจไม่เท่ากับ (detA)+(detB)
และ
det(A−B) อาจไม่เท่ากับ (detA)−(detB)
ดีเทอร์มิแนนต์กระจายการบวกและการลบไม่ได้นะ
2. det(A) เป็นลบได้แม้บางครั้งเราจะใช้สัญลักษณ์ |A|อย่าจำสับสนกับค่าสัมบูรณ์
3. จากสมบัติ det(kA)=kndet(A)เวลาเราดึงค่าคงที่ออกจากดีเทอร์มิแนนต์ อย่าลืมยกกำลังมิต
4. สูตรของดีเทอร์มิแนนต์ของแอดจอยท์ คือ
det(adjA)=(detA)n−1