ตรรกศาสตร์ เป็นการศึกษา โดยมักจะเป็นส่วนสำคัญของวิชาปรัชญา คณิตศาสตร์ คอมพิวเตอร์ รวมถึงภาษาศาสตร์ ตรรกศาสตร์เป็นการตรวจสอบข้อโต้แย้งที่สมเหตุสมผล (valid argument) หรือการให้เหตุผลแบบผิดๆ (fallacies) ตรรกศาสตร์ เป็นสาขาวิชาหนึ่งโดย อริสโตเติล
ตรรกศาสตร์ คืออะไร
ตรรกศาสตร์ คือ วิชาที่ว่าด้วยกฎเกณฑ์และเหตุผล การได้มาของผลภายใต้กฎเกณฑ์ที่กำหนดถือเป็นสาระสำคัญ ข้อความหรือการให้เหตุผลในชีวิตประจำวันสามารถสร้างเป็นรูปแบบที่ชัดเจน
ประพจน์ คืออะไรบ้าง
ประพจน์ ข้อความหรือประโยคที่มีค่าความจริง(T)หรือเท็จ(F) อย่างใดอย่างหนึ่ง ส่วนข้อความรูป คำสั่ง คำขอร้อง คำอุทาน คำปฏิเสธ ซึ่งไม่อยู่ในรูปของประโยคบอกเล่า จะเป็นข้อความที่ไม่เป็นประพจน์ สำหรับข้อความบอกเล่าแต่มีตัวแปรอยู่ด้วย ไม่สามารถบอกว่าเป็นจริงหรือเท็จจะไม่เป็นประพจน์ เรียกว่าประโยคเปิด
- ประโยคที่เป็นประพจน์ จะมีลักษณะเป็นประโยคบอกเล่าหรือปฏิเสธ
- ประโยคที่ไม่เป็นประพจน์ จะมีลักษณะเป็นประโยคคำถาม คำสัง ขอร้อง และประโยคอุทาน
- ประโยคที่มีค่าความจริงไม่แน่นอน หรือไม่อาจระบุได้ว่ามีค่าความจริงว่าเป็นจริงหรือเท็จได้ จะไม่เป็นประพจน์
ตัวเชื่อมประพจน์
โดยปกติเมื่อกล่าวถึงข้อความหรือประโยคนั้นมักจะมีกริยามากกว่าหนึ่งตัว แสดงว่าได้นำประโยคมาเชื่อมกัน มากกว่าหนึ่งประโยค ดังนั้นถ้านำประพจน์มาเชื่อมกัน ก็จะได้ประพจน์ใหม่ ซึ่งสามารถบอกได้ว่าเป็นจริงหรือเป็นเท็จ ตัวเชื่อมประพจน์มีอยู่ 5 ตัว และตัวเชื่อมที่ใช้กันมากในตรรกศาสตร์คือ และ หรือ ถ้า…แล้ว ก็ต่อเมื่อ ไม่
1. ตัวเชื่อมประพจน์ “และ”
การเชื่อม p และ q เข้าด้วยกันด้วยตัวเชื่อมประพจน์ “และ” สามารถเขียนแทนได้ด้วยสัญลักษณ์ p ∧ q ซึ่งจะมีค่าความจริงเป็นจริง (T) เมื่อ p และ q มีค่าความจริงเป็นจริง (T) ทั้งคู่ นอกนั้นมีค่าความจริงเป็นเท็จ (F)
2. ตัวเชื่อมประพจน์ “หรือ”
การเชื่อม p และ q เข้าด้วยกันด้วยตัวเชื่อมประพจน์ “หรือ” สามารถเขียนแทนได้ด้วยสัญลักษณ์ p ∨q ซึ่งจะมีค่าความจริงเป็นเท็จ (F) เมื่อ p และ q มีค่าความจริงเป็นเท็จ (F) ทั้งคู่ นอกนั้นมีค่าความจริงเป็นจริง (T)
3. ตัวเชื่อมประพจน์ “ถ้า…แล้ว”
การเชื่อม p และ q เข้าด้วยกันด้วยตัวเชื่อมประพจน์ “ถ้า…แล้ว” สามารถเขียนแทนได้ด้วยสัญลักษณ์ p → q ซึ่งจะมีค่าความจริงเป็นเท็จ (F) เมื่อ p เป็นจริง (T) และ q เป็นเท็จ (F) นอกนั้นมีค่าความจริงเป็นจริง (T)
4. ตัวเชื่อมประพจน์ “ก็ต่อเมื่อ”
การเชื่อม p และ q เข้าด้วยกันด้วยตัวเชื่อมประพจน์ “ก็ต่อเมื่อ” สามารถเขียนแทนได้ด้วยสัญลักษณ์ p ⇔ q ซึ่งจะมีค่าความจริงเป็นจริง (T) เมื่อ p และ q มีค่าความจริงตรงกัน และจะมีค่าความจริงเป็นเท็จ (F) เมื่อ p และ q มีค่าความจริงตรงข้ามกัน
5. นิเสธของประพจน์ “ไม่” นิเสธของประพจน์ใดๆ คือ ประพจน์ที่มีค่าความจริงตรงกันข้ามกับประพจน์นั้นๆ และสามารถเขียนแทนนิเสธของ p ได้ด้วย ~p
คุณสมบัติของการสมมูลของรูปแบบประพจน์
กำหนดให้ A, B และ C เป็นรูปแบบของประพจน์
- การสะท้อน: A ≡ A
- การสมมาตร: ถ้า A ≡ B แล้ว B ≡ A
- การถ่ายทอด: ถ้า A ≡ B แล้ว B ≡ C แล้ว A ≡ C
ตัวบ่งปริมาณ (∀,∃)
คือ ตัวระบุจำนวนสมาชิกในเอกภพสัมพัทธ์ที่ทำให้ประโยคเปิดกลายเป็นประพจน์ ตัวบ่งปริมาณมี 2 ชนิด คือ
- ตัวบ่งปริมาณที่กล่าวถึงสมาชิกทุกตัวในเอกภพสัมพัทธ์ ซึ่งเขียนแทนได้ด้วยสัญลักษณ์ ∀ อ่านว่า “สำหรับสมาชิก x ทุกตัว”
- ตัวบ่งปริมาณที่กล่าวถึงสมาชิกบางตัวในเอกภพสัมพัทธ์ ซึ่งเขียนแทนได้ด้วยสัญลักษณ์ ∃ อ่านว่า “สำหรับสมาชิก x บางตัว”
ค่าความจริงของประพจน์ที่มีตัวบ่งปริมาณ
- ∀x[P(x)] มีค่าความจริงเป็นจริง เมื่อ x ทุกตัวในเอกภพสัมพัทธ์ทำให้ P(x) เป็นจริง
- ∀x[P(x)] มีค่าความจริงเป็นเท็จ เมื่อมี x อย่างน้อย 1 ตัวที่ทำให้ P(x) เป็นเท็จ
- ∃x[P(x)] มีค่าความจริงเป็นจริง เมื่อมี x อย่าน้อย 1 ตัวที่ทำให้ P(x) เป็นจริง
- ∃x[P(x)] มีค่าความจริงเป็นเท็จ เมื่อไม่มี x ใดๆ ในเอกภพสัมพัทธ์ที่ทำให้ P(x) เป็นจริง
นิเสธของประพจน์ที่มีตัวบ่งปริมาณ
- ~∀x[P(x)] สมมูลกับ ∃x[~P(x)]
- ~∃x[P(x)] สมมูลกับ∀x[~P(x)]
- ~∀x[~P(x)] สมมูลกับ∃x[P(x)]
- ~∃x[~P(x)] สมมูลกับ∀x[P(x)]
ตัวบ่งปริมาณ (∀,∃) และ การอ้างเหตุผลตรรกศาสตร์เบื้องต้น
ประโยคเปิด (Open Sentence) คือ ข้อความที่อยู่ในรูปประโยคบอกเล่าหรือปฏิเสธ ที่มีตัวแปรและสื่อแทนค่าของตัวแปรนั้น จะได้ค่าความจริงแน่นอน หรือเป็นประพจน์ นิยมใช้สัญลักษณ์ P(x), P(x , y), Q(x , y) แทนประโยคเปิดที่มีตัวแปรระบุในวงเล็