จากแผนผังแสดงความสัมพันธ์ของจำนวนข้างต้น จะพบว่า ระบบจำนวนจริง จะประกอบไปด้วย
1. จำนวนอตรรกยะ หมายถึง จำนวนที่ไม่สามารถเขียนให้อยู่ในรูปเศษส่วนของจำนวนเต็ม หรือทศนิยมซ้ำได้ ตัวอย่างเช่น √2 , √3, √5, -√2, – √3, -√5 หรือ ¶ ซึ่งมีค่า 3.14159265…
2. จำนวนตรรกยะ หมายถึง จำนวนที่สามารถเขียนให้อยู่ในรูปเศษส่วนของจำนวนเต็มหรือทศนิยมซ้ำได้ ตัวอย่างเช่น
1/2 เขียนแทนด้วย 0.5000…
1/5 เขียนแทนด้วย 0.2000…
• ระบบจำนวนตรรกยะ
จำนวนตรรกยะยังสามารถแบ่งเป็น 2 ประเภท คือ
1. จำนวนตรรกยะที่ไม่ใช่จำนวนเต็ม หมายถึง จำนวนที่สามารถเขียนให้อยู่ในรูปเศษส่วนหรือทศนิยมซ้ำได้ แต่ไม่เป็นจำนวนเต็ม ตัวอย่างเช่น
2. จำนวนเต็ม หมายถึง จำนวนที่เป็นสมาชิกของเซต I = {…, -4, -3, -2, -1, 0, 1, 2, 3, 4, …} เมื่อกำหนดให้ I เป็นเซตของจำนวนเต็ม
• ระบบจำนวนเต็ม
จำนวนเต็มยังสามารถแบ่งได้อีกเป็น 3 ประเภทด้วยกัน
1. จำนวนเต็มลบ หมายถึง จำนวนที่เป็นสมาชิกของเซต I – โดยที่
I – = {…, -4, -3, -2, -1}
เมื่อ I – เป็นเซตของจำนวนเต็มลบ
2. จำนวนเต็มศูนย์ (0)
3. จำนวนเต็มบวก หมายถึง จำนวนที่เป็นสมาชิกของเซต I+ โดยที่
I+ = {1, 2, 3, 4, …}
เมื่อ I+ เป็นเซตของจำนวนเต็มบวก
จำนวนเต็มบวก เรียกได้อีกอย่างว่า “จำนวนนับ” ซึ่งเขียนแทนเซตของจำนวนนับได้ด้วยสัญลักษณ์ N โดยที่
N = I+ = {1, 2, 3, 4, …}
• ระบบจำนวนเชิงซ้อน
นอกจากระบบจำนวนจริงที่กล่าวมาข้างต้นแล้ว ยังมีจำนวนอีกประเภทหนึ่ง ซึ่งได้จากการแก้สมการต่อไปนี้
x2 = -1
∴ x = √-1 = i
x2 = -2
∴ x = √-2 = √2 i
x2 = -3
∴ x = √-3 = √3 i
จะเห็นได้ว่า “ไม่สามารถจะหาจำนวนจริงใดที่ยกกำลังสองแล้วมีค่าเป็นลบ” เราเรียก √-1 หรือจำนวนอื่นๆ ในลักษณะนี้ว่า “จำนวนจินตภาพ”และเรียก i ว่า “หนึ่งหน่วยจินตภาพ” เขียนแทนด้วยสัญลักษณ์ i
ยูเนียนของเซตจำนวนจริงกับเซตจำนวนจินตภาพ คือ ” เซตจำนวนเชิงซ้อน”
สมบัติของจำนวนจริง
กำหนด a, b, c เป็นจำนวนจริงใดๆ
1. สมบัติการสะท้อน a = a
2. สมบัติการสมมาตร ถ้า a = b แล้ว b = a
3. สมบัติการถ่ายทอด ถ้า a = b และ b = c แล้ว a = c
4. สมบัติการบวกด้วยจำนวนที่เท่ากัน ถ้า a = b แล้ว a + c = b + c
5. สมบัติการคูณด้วยจำนวนที่เท่ากัน ถ้า a = b แล้ว ac = bc
• สมบัติการบวกในระบบจำนวนจริง
กำหนด a, b, c เป็นจำนวนจริงใดๆ
1. สมบัติปิดการบวก a + b เป็นจำนวนจริง
2. สมบัติการสลับที่ของการบวก a + b = b + c
3. สมบัติการเปลี่ยนกลุ่มการบวก a + ( b + c) = ( a + b ) + c
4. เอกลักษณ์การบวก 0 + a = a = a + 0
นั่นคือ ในระบบจำนวนจริงจะมี 0 เป็นเอกลักษณ์การบวก
5. อินเวอร์สการบวก a + ( -a ) = 0 = ( -a ) + a
นั่นคือ ในระบบจำนวนจริง จำนวน a จะมี -a เป็นอินเวอร์สของการบวก
• สมบัติการคูณในระบบจำนวนจริง
กำหนดให้ a, b, c, เป็นจำนวนจริงใดๆ
1. สมบัติปิดการคูณ ab เป็นจำนวนจริง
2. สมบัติการสลับที่ของการคูณ ab = ba
3. สมบัติการเปลี่ยนกลุ่มของการคูณ a(bc) = (ab)c
4. เอกลักษณ์การคูณ 1 · a = a = a · 1
นั่นคือในระบบจำนวนจริง มี 1 เป็นเอกลักษณ์การคูณ
5. อินเวอร์สการคูณ a · a-1 = 1 = a · a-1, a ≠ 0
นั่นคือ ในระบบจำนวนจริง จำนวนจริง a จะมี a-1 เป็นอินเวอร์สการคูณ ยกเว้น 0
6. สมบัติการแจกแจง
a( b + c ) = ab + ac
( b + c )a = ba + ca
จากสมบัติของระบบจำนวนจริงที่ได้กล่าวไปแล้ว สามารถนำมาพิสูจน์เป็นทฤษฎีบทต่างๆ ได้ดังนี้
ทฤษฎีบทที่ 1
กฎการตัดออกสำหรับการบวก
เมื่อ a, b, c เป็นจำนวนจริงใดๆ
ถ้า a + c = b + c แล้ว a = b
ถ้า a + b = a + c แล้ว b = c
ทฤษฎีบทที่ 2
กฎการตัดออกสำหรับการคูณ
เมื่อ a, b, c เป็นจำนวนจริงใดๆ
ถ้า ac = bc และ c ≠ 0 แล้ว a = b
ถ้า ab = ac และ a ≠ 0 แล้ว b = c
ทฤษฎีบทที่ 3
เมื่อ a เป็นจำนวนจริงใดๆ
a · 0 = 0
0 · a = 0
ทฤษฎีบทที่ 4
เมื่อ a เป็นจำนวนจริงใดๆ
(-1)a = -a
a(-1) = -a
ทฤษฎีบทที่ 5
เมื่อ a, b เป็นจำนวนจริงใดๆ
ถ้า ab = 0 แล้ว a = 0 หรือ b = 0
ทฤษฎีบทที่ 6
เมื่อ a เป็นจำนวนจริงใดๆ
a(-b) = -ab
(-a)b = -ab
(-a)(-b) = ab
เราสามารถนิยามการลบและการหารจำนวนจริงได้โดยอาศัยสมบัติของการบวกและการคูณใน
ระบบจำนวนจริงที่ได้กล่าวไปแล้วข้างต้น
• การลบจำนวนจริง
บทนิยาม
เมื่อ a, b เป็นจำนวนจริงใดๆ
a- b = a + (-b)
นั่นคือ a – b คือ ผลบวกของ a กับอินเวอร์สการบวกของ b
• การหารจำนวนจริง
บทนิยาม
เมื่อ a, b เป็นจำนวนจริงใดๆ เมื่อ b ≠ 0