กฎของบอยล์
ตั้งชื่อตามโรเบิร์ต บอยล์ (Robert Boyle) นักเคมีและนักฟิสิกส์ชาวอังกฤษ มีใจความสำคัญว่า ถ้าอุณหภูมิคงตัว ความดันของแก๊สจะแปรผกผันกับปริมาตรของแก๊สนั้น ๆ หรือผลคูณของความดันและปริมาตรของแก๊สมีค่าคงตัวเสมอ ดังสมการ
โรเบิร์ต บอยล์ (Robert Boyle) ค.ศ. 1627 – 1691
มีนักวิทยาศาสตร์หลายกลุ่มพยายามศึกษาเรื่องแก๊ส โรเบิร์ต บอยล์ นักวิทยาศาสตร์ ชาวอังกฤษ ก็เป็นคนหนึ่งที่สนใจศึกษาสมบัติของแก๊สด้วย ในการศึกษาเรื่องแก๊สจะมีตัวแปรที่สำคัญอยู่ 4 ตัวแปร คือความดัน ปริมาตร อุณหภูมิ และปริมาณของแก๊ส เพราะฉะนั้นเมื่อเราต้องการสังเกตผลของตัวแปรหนึ่งซึ่งเกิดจากการเปลี่ยนแปลงของอีกตัวแปรหนึ่ง จึงต้องควบคุมตัวแปรอีกสองตัวให้คงที่ โรเบิร์ต บอยล์ก็เช่นเดียวกัน เมื่อเขาศึกษาเรื่องแก๊ส เขาจะศึกษาว่า เมื่อความดันเปลี่ยนไป ปริมาตรของแก๊สจะเปลี่ยนไปอย่างไร โดยการทำการทดลองที่อุณหภูมิเท่ากัน และ ปริมาณของแก๊สก็กำหนดให้คงที่ เขาทำการทดลองอย่างไรกัน
เครื่องมือนี้ สร้างโดย โรเบิร์ต ฮุค (Robert Hooke) ผู้ช่วยของเขา เครื่องมือประกอบด้วย 2 ส่วน คือถังอากาศและปั๊ม ถังอากาศเอาไว้บรรจุอากาศ ส่วนปั๊มประกอบไปด้วย ท่อทรงกระบอก ฝาสูบ ที่จับ ซึ่งส่วนนี้จะติดแน่นกับขาสามขาที่ตั้งอยู่ ระหว่างส่วนถังอากาศมีวาล์วเปิด-ปิดให้อากาศเข้าออกได้ เครื่องมือนี้ บอยล์ใช้หาความสัมพันธ์ระหว่างความดันและปริมาตรของอากาศที่อยู่ในท่อทรงกระบอกโดยการเลื่อนฝาสูบขึ้นลง ปริมาตรและความดันของอากาศภายในก็จะเปลี่ยนไปด้วย
อีกวิธีการหนึ่งที่ใช้หาความสัมพันธ์ระหว่างความดันและปริมาตรของแก๊สคือการใช้หลอดแก้วรูปตัวยูกับปรอท
หลอดแก้วรูปตัวยู (U) มีปลายสองด้าน ด้านหนึ่งเปิด ปลายอีกด้านหนึ่งปิดสนิท กักอากาศปริมาณหนึ่งไว้ภายในหลอดโดยการเติมปรอทเข้าไปในหลอดทางด้านปลายเปิดเมื่อปรับระดับผิวปรอทในปลายสองด้านเท่ากันดังรูป ก. (เขาปรับระดับปรอทให้เท่ากันได้อย่างไรลองคิดดูซิ) แสดงว่าความดันที่กระทำต่อผิวปรอททั้งด้านปลายปิดและผิวปรอทด้านปลายเปิดเท่ากันและทำการทดลองที่ความดันบรรยากาศนั่นคือแก๊สมีความดันเท่ากับความดันบรรยากาศ (1 atm)
หลังจากนั้น เติมปรอทเข้าไปด้านปลายเปิดปริมาณหนึ่งทำให้ลำปรอทในหลอดด้านปลายเปิดสูงกว่าด้านปลายปิด ได้ความแตกต่างของลำปรอทเป็น h ดังรูป ข. พบว่า ปริมาตรแก๊สในหลอดลดลงจากเดิม และเมื่อเพิ่มปริมาณปรอทเข้าไปอีกมีความแตกต่างลำปรอทสูง h1 ปริมาตรแก๊สก็ลดลงไปอีก ดังรูป ค. การเพิ่มปริมาณปรอทเข้าไปในหลอดก็คือการเพิ่มความดันให้กับแก๊ส เพราะความสูงของปรอทด้านปลายเปิดที่สูง h หรือ h1 ย่อมมีความดันส่งผลกระทำต่อแก๊ส ทำให้ปริมาตรแก๊สในหลอดลดลงเป็นสัดส่วนโดยตรงตามความดันภายนอกที่กระทำกับแก๊ส
ตารางข้างล่างแสดงผลการทดลองบอยล์
การทดลอง ครั้งที่ |
ปริมาตร (V , dm3) |
ความดัน (P , mmHg) |
PV (mmHg. cm3) |
1 | 5.00 | 760 | 3.80 x 103 |
2 | 10.00 | 380 | 3.80 x 103 |
3 | 15.00 | 253 | 3.80 x 103 |
4 | 20.00 | 191 | 3.82 x 103 |
5 | 25.00 | 151 | 3.78 x 103 |
6 | 30.00 | 127 | 3.81 x 103 |
7 | 35.00 | 109 | 3.82 x 103 |
8 | 40.00 | 95 | 3.80 x 103 |
9 | 45.00 | 84 | 3.78 x 103 |
หน่วยปริมาตรเป็นลูกบาศก์เซนติเมตร(cm3) ความดันเป็นมิลลิเมตรของปรอท(mmHg) ซึ่งก็คือความแตกต่างของความสูงลำปรอท ส่วนความดันอากาศของการทดลองของบอยล์ในเวลานั้นเท่ากับ 727.5 มิลลิเมตรปรอท
เมื่อนำข้อมูลของบอยล์ที่ได้มาเขียนกราฟ ดังรูปกราฟด้านล่าง กราฟนี้แสดงความสัมพันธ์ระหว่างความดัน(P) และปริมาตร(V)ของแก๊ส จะเห็นลักษณะกราฟเป็นเส้นโค้งไฮเปอร์โบลาร์กราฟที่ได้นี้เรียกว่าเส้นกราฟ ไอโซเทอร์ม ซึ่งหมายถึงการทำการทดลองที่อุณหภูมิคงที่ จากกราฟจะพบว่าเมื่อความดันของแก๊สเพิ่มขึ้น ปริมาตรของแก๊สจะลดลง
จากกราฟนี้เราสามารถหาพื้นที่ใต้กราฟ ณ จุดใดๆ บนเส้นกราฟ เมื่อลากไปตัดแกนความดันและแกนของปริมาตร พื้นที่ใต้กราฟจะมีค่าเท่ากันเสมอ เช่น พื้นที่ A
และ B ดังรูปด้านล่าง
ถ้าแก๊สแสดงสมบัติตามกฏของบอยล์ เราจะได้ว่า
พื้นที่ A = พื้นที่ B
จากตารางการทดลองด้านบนเราสามารถเขียนกราฟระหว่างความดันกับปริมาตรได้อีกหลายลักษณะ ลักษณะหนึ่งคือ เมื่อให้ปริมาตรเป็นแกน y และแกน x คือ 1/P จะได้กราฟเส้นตรงตัดจุดกำเนิด ดังรูป
อีกแบบหนึ่งคือ เป็นความสัมพันธ์ระหว่าง ผลคูณของความดันและปริมาตร(PV) และความดัน(P) จะได้กราฟมีลักษณะเป็นเส้นตรงความชันเท่ากับศูนย์
รูปข้างล่าง เมื่อดูจากด้ายซ้ายมือไปขวามือ หมายถึง เมื่อความดัน(P) ของแก๊สลดลงเรื่อยๆ ปริมาตร(V) ของแก๊สจะเพิ่มขึ้นเรื่อยๆ แต่เมื่อดูจากขวามาซ้ายมือ ปริมาตรของแก๊สลดลงเรื่อยๆ จะส่งผลทำให้ความดันของแก๊สเพิ่มขึ้นเรื่อยๆ เช่นกัน
จากผลการทดลองบอยล์ เขาได้พิมพ์ผลงานที่มีชื่อว่า New Experiments Physico-Mechanical ,Touching the Spring of the Air, and Its Effects ในปี ค.ศ. 1660
กฏของบอยล์ กล่าวว่า ที่อุณหภูมิคงที่ ปริมาตรของแก๊สที่มีมวลคงที่จำนวนหนึ่งเปลี่ยนไปเป็นปฏิภาคผกผันกับความดัน
หรือเขียนได้อีกแบบดังนี้
เมื่อ P และ V คือความดันและปริมาตรของแก๊สตามลำดับ
k = ค่าคงที่
ต่อมานักวิทยาศาสตร์อีกหลายท่านได้ทดลองความสัมพันธ์ของความดันแก๊สและปริมาตร ด้วยความแม่นยำมากขึ้นของแก๊สหลาย ๆ ชนิด พบว่า ผลคูณของความดันกับปริมาตรไม่ได้เป็นค่าคงที่ตามกฏของบอยล์ที่ความดันน้อยๆ แต่จะขึ้นอยู่กับความดันที่เปลี่ยนไป ที่ความดันน้อยกว่าหนึ่งบรรยากาศ ดังกราฟข้างล่าง
จากกราฟ แกน y คือ ผลคูณของปริมาตรและความดันแก๊สในหน่วย L.atm/mol ของแก๊สชนิดต่างๆ แกน x คือความดันของแก๊สส่วนเส้นประคือเส้นกราฟของแก๊สอุดมคติ
จากกราฟ เป็นกราฟของ แก๊สคาร์บอนไดออกไซด์(CO2) แก๊สออกซิเจน(O2) และแก๊สนีออน (Ne) แก๊สทั้ง 3 ชนิดจำนวน 1 โมล ที่ความดันแก๊สเข้าใกล้ ศูนย์ ปริมาตรของแก๊สมีค่าเท่ากับ 22.415 ลิตร เมื่อความดันเพิ่มขึ้น ผลคูณของความดันและปริมาตรของแก๊สคาร์บอนไดออกไซด์และแก๊สออกซิเจนลดลง ส่วนแก๊สนีออนจะเพิ่มขึ้น ที่ความดัน 0.5 บรรยากาศ พบว่าผลคูณของปริมาตรและความดันของแก๊สคาร์บอนไดออกไซด์ มีค่าน้อยกว่าของแก๊สออกซิเจน และของแก๊สนีออน ตามลำดับหรืออีกนัยหนึ่งก็คือที่ความดันเดียวกัน ปริมาตรของแก๊สคาร์บอนไดออกไซด์จะน้อยกว่าของแก๊สออกซิเจนและของแก๊สนีออน