เนื้อหาคณิตศาสตร์ ม.4-ม.5-ม.6
บทที่ 2 ตรรกศาสตร์
- ประพจน์
- การเชื่อมประพจน์
- การหาค่าความจริงของประพจน์
- การสมมูลและนิเสธของประพจน์
- สัจนิรันดร์และการอ้างเหตุผล
- ตัวบ่งปริมาณและประโยคเปิด
ประพจน์
“ตรรกศาสตร์” คือระบบวิชาความรู้ที่เกี่ยวข้องกับความคิดและการให้เหตุผล ใช้เป็นเครื่องมือในการเข้าถึงหลักปรัชญาต่างๆ และเป็นพื้นฐานในหลายๆสาขาวิชา และสำหรับวิชาคณิตศาสตร์ น้องๆจะได้เรียนตรรกศาสตร์ในเป็นรูปแบบและกฎเกณฑ์ีการให้เหตุผลทางคณิตศาสตร์ (Mathematical Logic) ไม่ว่าจะเป็น “และ” “หรือ” “ถ้า..แล้ว” “ก็ต่อเมื่อ” และนิเสธ นอกจากนี้ หลักตรรกศาสตร์จะใช้สำหรับการพิสูจน์ทฤษฎีต่างๆ
หมายเหตุ : ข้อสังเกตจากตาราง
1. p Λ q จะมีค่าความจริงเป็นจริง เมื่อ p และ q มีค่าความจริงเป็นจริงทั้งคู่
p Λ q จะมีค่าความจริงเป็นเท็จ เมื่อ p หรือ q มีค่าความจริงเป็นเท็จ
อย่างน้อยหนึ่งประพจน์
2. p ∨ q จะมีค่าความจริงเป็นเท็จ เมื่อ p และ q มีค่าความจริงเป็นเท็จทั้งคู่
p ∨ q จะมีค่าความจริงเป็นจริง เมื่อ p หรือ q มีค่าความจริงเป็นจริง
อย่างน้อยหนึ่งประพจน์
3. p → q จะมีค่าความจริงเป็นเท็จ เมื่อ p มีค่าความจริงเป็นจริง และ q มีค่าความจริงเป็นเท็จ
p → q จะมีค่าความจริงเป็นจริง เมื่อ p มีค่าความจริงเป็นเท็จ
p → q จะมีค่าความจริงเป็นจริง เมื่อ q มีค่าความจริงเป็นจริง
4. p ↔ q จะมีค่าความจริงเป็นจริง เมื่อ p และ q มีค่าความจริงเหมือนกัน
p ↔ q จะมีค่าความจริงเป็นเท็จ เมื่อ p และ q มีค่าความจริงต่างกัน
กำหนดให้ p แทน 2 เป็นจ านวนคู่
q แทน 2 เป็นจ านวนเฉพาะ
r แทน 2 เป็นจ านวนอตรรกยะ
จงหาค่าความจริงของประพจน์ในแต่ละข้อต่อไปนี้
(1) p Λ q (2) p Λ r
(3) ~q Λ r (4) p ∨ q
(5) p ∨ r (6) q ∨ ~r
(7) p→ ~q (8) p → r
(9) q → r (10) ~r → p
(11) p ↔ q (12) ~q ↔ r
ตัวอย่าง 2 ก าหนดประพจน์ให้ต่อไปนี้
p แทน Ø เป็นเซตจำกัด
q แทน Ø เป็นสับเซตแท้ของทุกเซต
r แทน P(Ø) = {Ø}
s แทน Ø υ A = Ø
จงหาค่าความจริงของประพจน์ในแต่ละข้อต่อไปนี้
(1) (pΛ q) → r
(2) (p ∨ r) Λ (q ∨ r)
(3) ~s Λ (r ∨ ~q)
(4) (p → ~r) ↔ (~s Λ q)
(5) ~ p → (q → (~ r ↔ s))
(6) (q ∨ ~ p)↔ (r → ~ s)
การเชื่อมประพจน์
โดยปกติเมื่อกล่าวถึงข้อความหรือประโยคนั้นมักจะมีกริยามากกว่าหนึ่งตัว แสดงว่าได้นำประโยคมาเชื่อมกัน มากกว่าหนึ่งประโยค ดังนั้นถ้านำประพจน์มาเชื่อมกัน ก็จะได้ประพจน์ใหม่ ซึ่งสามารถบอกได้ว่าเป็นจริงหรือเป็นเท็จ ตัวเชื่อมประพจน์มีอยู่ 5 ตัว และตัวเชื่อมที่ใช้กันมากในตรรกศาสตร์คือ และ หรือ ถ้า…แล้ว ก็ต่อเมื่อ ไม่
- ตัวเชื่อมประพจน์ “และ”
การเชื่อม p และ q เข้าด้วยกันด้วยตัวเชื่อมประพจน์ “และ” สามารถเขียนแทนได้ด้วยสัญลักษณ์ p ∧ q ซึ่งจะมีค่าความจริงเป็นจริง (T) เมื่อ p และ q มีค่าความจริงเป็นจริง (T) ทั้งคู่ นอกนั้นมีค่าความจริงเป็นเท็จ (F) - ตัวเชื่อมประพจน์ “หรือ”
การเชื่อม p และ q เข้าด้วยกันด้วยตัวเชื่อมประพจน์ “หรือ” สามารถเขียนแทนได้ด้วยสัญลักษณ์ p ∨q ซึ่งจะมีค่าความจริงเป็นเท็จ (F) เมื่อ p และ q มีค่าความจริงเป็นเท็จ (F) ทั้งคู่ นอกนั้นมีค่าความจริงเป็นจริง (T) - ตัวเชื่อมประพจน์ “ถ้า…แล้ว”
การเชื่อม p และ q เข้าด้วยกันด้วยตัวเชื่อมประพจน์ “ถ้า…แล้ว” สามารถเขียนแทนได้ด้วยสัญลักษณ์ p → q ซึ่งจะมีค่าความจริงเป็นเท็จ (F) เมื่อ p เป็นจริง (T) และ q เป็นเท็จ (F) นอกนั้นมีค่าความจริงเป็นจริง (T) - ตัวเชื่อมประพจน์ “ก็ต่อเมื่อ”
การเชื่อม p และ q เข้าด้วยกันด้วยตัวเชื่อมประพจน์ “ก็ต่อเมื่อ” สามารถเขียนแทนได้ด้วยสัญลักษณ์ p ⇔ q ซึ่งจะมีค่าความจริงเป็นจริง (T) เมื่อ p และ q มีค่าความจริงตรงกัน และจะมีค่าความจริงเป็นเท็จ (F) เมื่อ p และ q มีค่าความจริงตรงข้ามกัน - นิเสธของประพจน์ “ไม่”
นิเสธของประพจน์ใดๆ คือ ประพจน์ที่มีค่าความจริงตรงกันข้ามกับประพจน์นั้นๆ และสามารถเขียนแทนนิเสธของ p ได้ด้วย ~p
สัจนิรันดร์
สัจจะ แปลว่าจริง ส่วนนิรันดร์ แปลว่าตลอดกาล ประพจน์ที่เป็นสัจนิรันดร์ คือ ประพจน์ที่มีค่าความจริงเป็นจริง ทุกกรณีของประพจน์ย่อย
ประโยคเปิด (Open Sentence)
คือข้อความที่อยู่ในรูปประโยคบอกเล่าหรือปฏิเสธ ที่มีตัวแปรและสื่อแทนค่าของตัวแปรนั้น จะได้ค่าความจริงแน่นอน หรือเป็นประพจน์ นิยมใช้สัญลักษณ์ P(x), P(x , y), Q(x , y) แทนประโยคเปิดที่มีตัวแปรระบุในวงเล็บ
ตัวบ่งปริมาณ (∀,∃)
ตัวบ่งปริมาณ เป็นตัวระบุจำนวนสมาชิกในเอกภพสัมพัทธ์ที่ทำให้ประโยคเปิดกลายเป็นประพจน์ ตัวบ่งปริมาณมี 2 ชนิด คือ
- ตัวบ่งปริมาณที่กล่าวถึง “สมาชิกทุกตัวในเอกภพสัมพัทธ์” ซึ่งเขียนแทนได้ด้วยสัญลักษณ์ “∀” อ่านว่า”สำหรับสมาชิก x ทุกตัว”
- ตัวบ่งปริมาณที่กล่าวถึง “สมาชิกบางตัวในเอกภพสัมพัทธ์” ซึ่งเขียนแทนได้ด้วยสัญลักษณ์ “∃” อ่านว่า “สำหรับสมาชิก x บางตัว”
ค่าความจริงของประพจน์ที่มีตัวบ่งปริมาณ
- ∀x[P(x)] มีค่าความจริงเป็นจริง เมื่อ x ทุกตัวในเอกภพสัมพัทธ์ทำให้ P(x) เป็นจริง
- ∀x[P(x)] มีค่าความจริงเป็นเท็จ เมื่อมี x อย่างน้อย 1 ตัวที่ทำให้ P(x) เป็นเท็จ
- ∃x[P(x)] มีค่าความจริงเป็นจริง เมื่อมี x อย่าน้อย 1 ตัวที่ทำให้ P(x) เป็นจริง
- ∃x[P(x)] มีค่าความจริงเป็นเท็จ เมื่อไม่มี x ใดๆ ในเอกภพสัมพัทธ์ที่ทำให้ P(x) เป็นจริง
นิเสธของประพจน์ที่มีตัวบ่งปริมาณ
~∀x[P(x)] สมมูลกับ ∃x[~P(x)]
~∃x[P(x)] สมมูลกับ∀x[~P(x)]
~∀x[~P(x)] สมมูลกับ∃x[P(x)]
~∃x[~P(x)] สมมูลกับ∀x[P(x)]
ตัวอย่างประพจน์ที่เป็นนิเสธกันที่ควรทราบ มีดังนี้
~(p ∧ q) สมมูลกับ ~p ∨ ~q
~(p ∨ q) สมมูลกับ ~p ∧ ~q
~(p → q) สมมูลกับ p ∧ ~q
~(p ⇔ q) สมมูลกับ (p ⇔ ~q) ∨(q ⇔ ~p)
~(p ⇔ q) สมมูลกับ (p ∧ ~q) ∨ ( q ∧~p)
ตรวจสอบสัจนิรันดร์ โดย การสร้างตารางค่าความจริง
ประพจน์ (p∨q)∧p(p∨q)∧p เป็นสัจนิรันดร์หรือไม่
จากประพจน์ที่กำหนดให้ จะมีประพจน์ย่อยทั้งหมดสองประพจน์ ดังนั้นสร้างตารางที่มีประพจน์สองประพจน์นี้ขึ้นมา
p | q |
จากนั้นให้เติมกรณีที่เป็นไปได้ทั้งหมด ซึ่ง จำนวนกรณีที่เป็นไปได้ทั้งหมดคือ 2n เมื่อ n คือจำนวนประพจน์ วิธีการเติมที่ง่าย และ ได้ครบทุกกรณีโดยไม่ตกหล่น คือ การเติมแบบกลุ่มกลุ่มละครึ่ง
เช่น ในข้อนี้ มีประพจน์ทั้งหมด 2 ประพจน์ ดังนั้นจะมีทั้งหมด 22= 4 กรณี เริ่มแรก เนื่องจากมี 4 กรณี จะได้ว่าครึ่งหนึ่งคือ2 ดังนั้นหลักแรกให้เติม T จำนวนสองตัว และ F จำนวนสองตัว จะได้
p | q |
T | |
T | |
F | |
F |
จากนั้นให้ ให้ดูครึ่งนึงของ 22 จะได้ 11 ดังนั้นในหลักที่ 22 ให้เติม TT กับ FF สลับกันครั้งละหนึ่งตัว จะได้
p | q |
T | T |
T | F |
F | T |
F | F |
เราก็จะได้กรณีที่เป็นไปได้ครบทั้งหมด
จากโจทย์เราต้องการค่าความจริงของประพจน์ (p∨q)∧p(p∨q)∧p จากตารางข้างบนเราไม่มีค่าความจริงของ p∨qp∨q ดังนั้นสร้างหลักของ p∨qp∨q เพิ่ม และเติมค่าความจริงให้เรียบร้อย จะได้
p | q | p∨q |
T | T | T |
T | F | T |
F | T | T |
F | F | F |
ตอนนี้เรามีค่าความจริงครบทั้งหมดแล้ว ดังนั้นให้สร้างหลักสุดท้าย เป็นหลักของ ประพจน์ที่เราต้องการตรวจสอบ จะได้
p | q | p∨q | (p∨q)∧p |
T | T | T | T |
T | F | T | T |
F | T | T | F |
F | F | F | F |
จากตารางด้านบนจะเห็นว่ามีสองกรณีที่ค่าความจริงของประพจน์ที่โจย์ถามนั้นเป็นเท็จ จึง ทำให้ได้ว่า ประพจน์นี้ ไม่เป็นสัจนิรันดร์
ตอบ ประพจน์ที่กำหนดให้ ไม่เป็นสัจนิรันดร์
ตรวจสอบสัจนิรันดร์ โดย การสร้างตารางค่าความจริง
ประพจน์ (p∧q)→(p∨q)(p∧q)→(p∨q) เป็นสัจนิรันดร์หรือไม่
ใช้หลักการเดียวกันกับข้อข้างบนสร้างตารางค่าความจริง จะได้ตารางดังนี้
p | q | (p∧q) | (p∨q ) | (p∧q )→(p∨q ) |
T | T | T | T | T |
T | F | F | T | T |
F | T | F | T | T |
F | T | F | F | T |