กราฟของฟังก์ชันกำลังสอง พาราโบลา (PARABOLA)
สมการพาราโบลา
สมการของ พาราโบลา คือ สมการที่สามาเขียนให้อยู๋ในรูป
y = Ax + Bx + C โดยที่ a ≠ 0
โดยทั่วไปแล้ว เพื่อความสะดวกในการทำโจทย์เราจะพยายามแปลงสมการพาราโบลาให้อยู่ในรูปของ
y=(x-h)2+k
สมการพาราโบลาเป็นสมการที่อยู่ในชีวิตประจำวันของเรา ซึ่งเราสามารถนำไปประยุกต์ใช้ต่อไปในอนาคตได้อย่างมากมาย เพราะฉะนั้นการเรียนรู้กราฟพาราโบลาให้เข้าใจเป็นเหมือนพื้นที่ฐานที่ดีในการประยุกต์ใช้ต่อไปในอนาคต
เนื้อหาต่อไปนี้จะค่อย ๆ เริ่มจากการสังเกตสมการพาราโบลา ที่ง่ายที่สุด ไปถึงรูปแบบที่ยากที่สุดก็คือรูปแบบที่กล่าวไว้ข้างต้น
ฟังก์ชันกำลังสอง (Quadratic function)
ฟังก์ชันกำลังสองเป็นฟังก์ชันที่อยู่ในรูป y = ax2 + bx + c เมื่อ a, b, c เป็นจำนวนจริงใด ๆ และ a¹ 0 ซึ่งกราฟของ
ฟังก์ชันกำลังสอง เรียกว่า พาราโบลา
1) y = 2x2 + 3x – 10 เมื่อ a = 2 , b = 3 และ c = -1
2) y = x2 + 1 เมื่อ a = 1 , b = 0 และ c = 1
3) y = -x2 + 2x + 1 เมื่อ a = -1 , b = 2 และ c = 1
1) กราฟของฟังก์ชันกำลังสอง ที่กำหนดด้วยสมการ y = ax2 เมื่อ a ¹ 0
2) กราฟที่กำหนดด้วยสมการ y = ax2 + k เมื่อ a ¹ 0 และ k ¹ 0
กราฟที่กำหนดด้วยสมการ y = ax2 + k เมื่อ a ¹ 0 และ k ¹ 0 จะเป็นกราฟพาราโบลาที่มีจุดวกกลับหรือจุดสูงสุดหรือจุดต่ำสุด อยู่ที่ (0, k) และแกนสมมาตรคือ แกน Y
3. กราฟของ y = a(x – h)2 เมื่อ a ¹ 0 และ h > 0
3.1) กราฟที่กำหนดด้วยสมการ y = a(x – h)2 เมื่อ a ¹ 0 และ h ¹ 0 จะเป็นกราฟ
พาราโบลาที่มีจุดวกกลับหรือจุดสูงสุดหรือจุดต่ำสุดอยู่ที่ (h, 0) และแกนสมมาตรคือเส้นตรง x = h
3.2) กราฟของ y = a(x – h)2 เมื่อ a ¹ 0 และ h < 0
ถ้า h < 0 จะได้สมการใหม่เป็น y = a(x – (-h))2
= a(x + h)2
4. กราฟของฟังก์ชันกำลังสองที่กำหนดด้วยสมการ y = a(x – h)2 + k เมื่อ a ¹ 0 , h ¹ 0 และ k ¹ 0 จะเป็นพาราโบลาที่มีจุดวกกลับหรือจุดสูงสุดหรือจุดต่ำสุดอยู่ที่ (h, k) และมีแกนสมมาตรคือ เส้นตรง x = h
5. กราฟที่กำหนดด้วยสมการ y = ax2 + bx + c เมื่อ a ¹ 0 การเขียนกราฟควรจัดสมการให้อยู่ในรูป
y = a(x – h)2 + k จะทำให้เขียนกราฟได้ง่ายขึ้น
จากสมการ y = ax2 + bx + c สามารถเปลี่ยนให้อยู่ในรูป y = a(x – h)2 + k ได้โดยใช้ความรู้เรื่องกำลังสองสมบูรณ์
กราฟฟังก์ชันกำลังสอง
พหุนามกำลังสองอยู่ในรูปของ ax2 + bx + c เมื่อ a, b และ c เป็นจำนวนจริงใด ๆ เรานิยามเป็นฟังก์ชัน
P(x) = ax2 + bx + c
= a[(x + b/(2a))2 – b2/(4a2) + c/a]
= a[(x + b/(2a))2 – (b2 – 4ac)/(4a2)]
ถ้ากำหนดให้ h = – b/2a และ k = – (b2 – 4ac)/(4a) ฟังก์ชันที่อยู่รูป
P(x) = a(x – h)2 + k
มีกราฟเป็นรูปพาราโบลา
กรณีที่ a > 0 จะเป็นกราฟพาราโบลาหงายและมีต่ำสุดอยู่ที่จุด (h,k)
กรณีที่ a < 0 จะเป็นกราฟพาราโบลาคว่ำมีจุดสูงสุดอยู่ที่จุด (h,k)
สรุป ลักษณะของกราฟที่กำหนดด้วยสมการ y = ax2 + k
ถ้า a > 0 ได้พาราโบลาหงาย จุดต่ำสุดอยู่ที่ (0, k) ค่าต่ำสุด = k
ถ้า a < 0 ได้พาราโบลาคว่ำ จุดสูงสุดอยู่ที่ (0, k) ค่าสูงสุด = k
แกนสมมาตรคือ แกน y หรือเส้นตรง x = 0 สมการแกนสมมาตรคือ x = 0
ถ้า k > 0 จุดวกกลับอยู่เหนือแกน X
ถ้า k < 0 จุดวกกลับอยู่ใต้แกน X
ถ้า a, k มีเครื่องหมายเหมือนกัน กราฟไม่ตัดแกน X
ถ้า a, k มีเครื่องหมายต่างกัน กราฟจะตัดแกน X
3. กราฟของ y = a(x – h)2 เมื่อ a ¹ 0 และ h > 0
3.1) กราฟที่กำหนดด้วยสมการ y = a(x – h)2 เมื่อ a ¹ 0 และ h ¹ 0 จะเป็นกราฟ
พาราโบลาที่มีจุดวกกลับหรือจุดสูงสุดหรือจุดต่ำสุดอยู่ที่ (h, 0) และแกนสมมาตรคือเส้นตรง x = h
3.2) กราฟของ y = a(x – h)2 เมื่อ a ¹ 0 และ h < 0
ถ้า h < 0 จะได้สมการใหม่เป็น y = a(x – (-h))2
= a(x + h)2
สรุป ลักษณะของกราฟที่กำหนดด้วยสมการ y = a(x – h)2
ถ้า a > 0 ได้พาราโบลาหงาย จุดต่ำสุดอยู่ที่ (h, 0) ค่าต่ำสุด = 0
ถ้า a < 0 ได้พาราโบลาคว่ำ จุดสูงสุดอยู่ที่ (h, 0) ค่าสูงสุด = 0
แกนสมมาตรคือ เส้นตรง x = h สมการแกนสมมาตรคือ x = h
h > 0 แกนสมมาตรอยู่ทางซ้ายของแกน Y
h < 0 แกนสมมาตรอยู่ทางขวาของแกน Y
4. กราฟของฟังก์ชันกำลังสองที่กำหนดด้วยสมการ y = a(x – h)2 + k เมื่อ a ¹ 0 , h ¹ 0
และ k ¹ 0 จะเป็นพาราโบลาที่มีจุดวกกลับหรือจุดสูงสุดหรือจุดต่ำสุดอยู่ที่ (h, k) และมีแกนสมมาตรคือ เส้นตรง x = h
สรุป ลักษณะของกราฟที่กำหนดด้วยสมการ y = a(x – h)2 + k
เมื่อ a > 0 ได้พาราโบลาหงาย จุดต่ำสุดอยู่ที่ (h, k) ค่าต่ำสุด = k
เมื่อ a < 0 ได้พาราโบลาคว่ำ จุดสูงสุดอยู่ที่ (h, k) ค่าสูงสุด = k
ถ้า k > 0 จุดวกกลับอยู่เหนือแกน X
ถ้า k < 0 จุดวกกลับอยู่ใต้แกน X
แกนสมมาตร คือ เส้นตรง x = h สมการแกนสมมาตรคือ x = h
ถ้า h > 0 แกนสมมาตรอยู่ทางซ้ายมือของแกน Y
ถ้า h < 0 แกนสมมาตรอยู่ทางขวามือของแกน Y
ถ้า a และ k มีเครื่องหมายเหมือนกันกราฟไม่ตัดแกน X
ถ้า a และ k มีเครื่องหมายต่างกันกราฟตัดแกน X
5. กราฟที่กำหนดด้วยสมการ y = ax2 + bx + c เมื่อ a ¹ 0 การเขียนกราฟควรจัดสมการให้อยู่ในรูป
y = a(x – h)2 + k จะทำให้เขียนกราฟได้ง่ายขึ้น
จากสมการ y = ax2 + bx + c สามารถเปลี่ยนให้อยู่ในรูป y = a(x – h)2 + k ได้โดยใช้ความรู้เรื่องกำลังสองสมบูรณ์
ตัวอย่าง จงหาจุดวกกลับของกราฟของฟังก์ชัน y = 2x2 + 4x – 16
วิธีทำ จาก y = 2x2 + 4x – 16
= 2(x2 + 2x – 8)
= 2{(x2 + 2x + 1) – 8 – 1}
= 2{(x + 1)2 – 9}
= 2(x + 1)2 – 18
จะได้ h = -1 , k = -18
จุดวกกลับคือ (-1, -18)