การดำเนินการของเซต คือ การนำเซตที่มีอยู่แล้วมาดำเนินการเพื่อให้ได้เซตใหม่ เราจะใช้แผนภาพเวนน์-ออยเลอร์เพื่อช่วยให้เห็นภาพและเข้าใจได้ง่ายขึ้น
การเขียนแผนภาพ เราจะใช้เอกภพสัมพัทธ์ U ด้วยรูปสี่เหลี่ยมผืนผ้า ส่วนเซตที่อยู่ใน U เราอาจจะเขียนแทนด้วยวงกลม วงรี หรือรูปอื่นๆ
ยูเนียน (Union)
ยูเนียน (Union) มีนิยามว่า เซต A ยูเนียนกับเซต B คือเซตซึ่งประกอบด้วยสมาชิกที่เป็นสมาชิกของเซต A หรือ
เซต B หรือทั้ง A และ B สามารถเขียนแทนได้ด้วย สัญลักษณ์ A ∪ B
ตัวอย่างเช่น A ={1,2,3}
B = {3,4,5}
∴ A U B = {1,2,3,4,5}
อินเตอร์เซกชัน
อินเตอร์เซกชัน (Intersection) มีนิยามคือเซต A อินเตอร์เซกชันเซต B คือเซตซึ่งประกอบด้วยสมาชิกที่เป็นสมาชิกของเซต A และเซต B สามารถเขียนแทนได้ด้วยสัญลักษณ์ A ∩ B
ตัวอย่างเช่นA ={1,2,3}
B = {3,4,5}
∴ A ∩ B = {3}
คอมพลีเมนต์
คอมพลีเมนต์ (Complements) มีนิยามคือ ถ้าเซต A ใดๆ ในเอกภพสัมพัทธ์ แล้ว คอมพลีเมนต์ของเซต A คือ เซตที่ประกอบด้วยสมาชิกที่เป็นสมาชิกของ U แต่ไม่เป็นสมาชิกของ A สามารถเขียนแทนได้ด้วยสัญลักษณ์ A’
ตัวอย่างเช่น U = {1,2,3,4,5}
A ={1,2,3}
∴ A’ = {4,5}
ผลต่าง
ผลต่าง(Differnce) บทนิยาม ถ้า A และ B ต่างก็เป็นสับเซตของเซต U ผลต่างของเซต A และ B คือ เซตที่ประกอบด้วยสมาชิกของเซต A แต่ไม่เป็นสมาชิกของ B เขียนแทนด้วย A – B
ตัวอย่าง กำหนดเซต A และ B จงหา A – B
กำหนด A = {3, 9}
B = {4, 6, 7}
A – B = {3, 9}