การให้เหตุผลทางคณิตศาสตร์
การให้เหตุผลแบ่งออกเป็นสองแบบคือ
1. การให้เหตุผลแบบอุปนัย (Inductive Reasoning)
นิยาม: การให้เหตุผลแบบอุปนัย หมายถึง วิธีการสรุปในการค้นคว้าความจริงจากการสังเกตหรือทดลองหลายครั้งจากกรณีย่อยๆแล้วนำมาสรุปเป็นความรู้แบบทั่วไป
เป็นการให้เหตุผลโดยใช้ข้อสังเกตุ ผลการทดลองย่อย หรือความจริงส่วนย่อยที่พบเห็น มาสรุปเป็นข้อตกลง หรือข้อคาดเดาทั่วไป รวมไปถึงคำพยากรณ์ด้วย การหาข้อสรุปหรือความจริงโดยวิธีการให้เหตุผลแบบอุปนัยนั้น ไม่จำเป็นจะต้องถูกต้องทุกครั้ง เนื่องจากเป็นการสรุปผลจากข้อเท็จจริงที่มีอยู่ โดยข้อสรุปที่ได้จะมีความถูกต้องมากเท่าใดนั้นก็จะขึ้นอยู่กับสามอย่างต่อไปนี้
- จำนวนข้อมูล ที่มากเพียงพอต่อการสรุปความ
- ข้อมูลหลักฐาน ที่ได้นำมาให้เหตุผลนั้น เป็นตัวแทนที่ดีหรือไม่
- ความซับซ้อนของข้อสรุปที่ต้องการ
2. การให้เหตุผลแบบนิรนัย (Deductive Reasoning)
เป็นการนำความรู้พื้นฐานที่อาจเป็นความเชื่อ ข้อตกลง กฏ หรือบทนิยาม ซึ่งเป็นสิ่งที่รู้มาก่อนและยอมรับว่าเป็นจริง เพื่อหาเหตุผลนำไปสู่ข้อสรุป
การให้เหตุผลแบบอุปนัย ต่างจาก การให้เหตุผลแบบนิรนัย อย่างไร
การให้เหตุผลแบบอุปนัยจะต้องมีกฎของความสมเหตุสมผลเฉพาะของตนเอง นั่นคือ จะต้องมีข้อสังเกต หรือผลการทดลอง หรือ มีประสบการณ์ที่มากมายพอที่จะปักใจเชื่อได้ แต่ก็ยังไม่สามารถแน่ใจในผลสรุปได้เต็มที่ เหมือนกับการให้เหตุผลแบบนิรนัย ดังนั้นจึงกล่าวได้ว่าการให้เหตุผลแบบนิรนัยจะให้ความแน่นอน แต่การให้เหตุผลแบบอุปนัย จะให้ความน่าจะเป็น