วงรี
วงรี ประกอบไปด้วยดังนี้
1) แกนเอกคือแกนที่ยาวที่สุด และแกนโทคือแกนที่สั้นกว่า ของวงรี
2) จุดยอดของวงรี
3) จุดโฟกัส ซึ่งจะแตกต่างกันไปแล้วแต่ว่าแกนใดเป็นแกนเอก ของวงรี
4) ความเยื้องศูนย์กลาง (eccentricity) ของวงรี
นิยามสมการวงรี
วงรี (Ellipse) คือเซตของจุดทั้งหมดในระนาบซึ่งผลบวกของระยะทางจากจุดใดๆจุดหนึ่งในเซตไปยังจุดคงที่ 2 จุดมีค่าคงตัว
จากบทนิยามนี้ มีวิธีง่ายๆ ในการวาดรูปวงรี (ดูรูปที่ 2) วางกระดาษบนกระดานวาดรูปปักหมุด 2 ตัวที่จุดต่างกัน ใช้เป็นโฟกัสของวงรี ตัดเชือกเส้นหนึ่งยาวกว่าระยะทางระหว่างหมุดทั้งสอง ผูกปลายเชือกแต่ละข้างกับหมุด โดยใช้ดินสอรั้งเชื่อให้ตึงตลอดเวลา ขณะที่ค่อยๆ เคลื่อนดินสอรอบโฟกัส รอยดินสอที่เกิดขึ้นจะเป็นรูปวงรีเพราะผลบวกของระยะทางจากจุดปลายดินสอถึงโฟกัสทั้งสองเท่ากับความยาวของเชือกที่มีความยาวคงตัวเสมอ
ถ้าเชือกยาวกว่าระยะห่างระหว่างโฟกัสเพียงเล็กน้อย วงรีที่วาดได้จะมีรูปร่างเรียวยาว ดังเช่นในรูปที่ 3ก แต่ถ้าโฟกัสอยู่ใกล้กันเมื่อเปรียบเทียบกับความยาวของเชือก (เชือกยาวกว่าระยะห่างระหว่างโฟกัสมาก) วงรีที่วาดได้จะเกือบกลม ดังเช่นในรูปทางขวา ยิ่งถ้าจุดโฟกัสใกล้กันเท่าไหร่ ก็จะยิ่งกลมขึ้นๆ
ส่วนประกอบของวงรี
F, F’ เป็นจุดคงที่ เรียกว่าจุดโฟกัส (Focus)
V, V’ เป็นเส้นตรงที่ผ่านจุดโฟกัส และมีจุดปลายทั้งสองเป็นจุดยอด เรียกว่า แกนนอก
B, B’ เป็นเส้นตรงที่ผ่านจุดศูนย์กลางและตั้งฉากกับแกนเอก โดยมีจุดปลายทั้งสองอยู่บนวงรี เรียกว่า แกนโท
m1m2, m1‘m2‘ เป็นเส้นตรงที่ผ่านจุดโฟกัส และตั้งฉากกันแกนของรูป เรียกว่าเส้นลาตัสเรกตัม