ความน่าจะเป็น ( Probability )
ความน่าจะเป็น หรือ Probability ทฤษฎีความน่าจะเป็นเริ่มมาจากปัญหาของการเล่นเกมการพนัน โดยมีนักพนันชาวฝรั่งเศสชื่อ เซอวาลิเยร์ เดอ เมเร (Chevalier de Mire) ซึงนิยมเล่นพนันมาก เดอ เมเร มีปัญหาอยู่อย่างนึงที่ยังแก้ไม่ตกสักที คือปัญหาในการแบ่งเงินพนันกันระหว่างนักพนัน แกเลยเข้าไปขอคำแนะนำจากนักคณิตศาสตร์ที่ปราดเปรื่องที่สุดในฝรั่งเศสยุคนั้น คือปาสคาล (Pascal) และแฟร์มาต์ (Fermat) จนเป็นที่มาของทฤษฎีความน่าจะเป็นในยุคปัจจุบัน
ความหมายของความน่าจะเป็น
ในชีวิตประจำวันของทุกคนต้องได้ยินคำว่า ความน่าจะเป็น หรือ โอกาส เช่น โอกาสที่วันนี้แดดจะออกมีมาก ความน่าจะเป็นที่โยนเหรียญแล้วจะได้หัว มีเท่ากับได้ก้อย หรือความน่าจะเป็นที่จะถูกหวย มาน้อยกว่าจะถูกเจ้ามือกิน ฯลฯ ในยุคสมัคยก่อนที่ผู้คนส่วนมากใช้ความรู้สึกหรืออารมณ์ในการตัดสินใจอะไรหลายๆอย่าง ซึ่งร้อยคนก็มีความเห็นไม่เหมือนกัน ไม่มีหลักการในการคิด ความน่าจะเป็นจึงมีใช้ช่วยในการตัดสินในเกี่ยวกับเหตุการณ์ต่าง ๆ ได้ถูกต้องมากขึ้น เช่น วันนี้ควรจะเตรียมร่มหรือเสื้อกันฝนเวลาออกนอกบ้าน หรือไม่เมื่อมองดูท้องฟ้าแล้วมืดครึ้ม แสดงว่าโอกาสที่ฝนจะตกวันนี้มีมาก ดังนั้นจึงควรเตรียมอุปกรณ์ที่จะกันฝนได้ไปด้วย อาจจะเป็นร่ม หรือเสื้อกันฝนก็ได้
นิยามของความน่าจะเป็น
ถ้าการทดลองอย่างสุ่มหนึ่ง มีสมาชิกของ แซมเปิลสเปซ เป็นจำนวนเท่ากับ N
และจำนวนสมาชิกของเหตุการณ์ E ที่เราสนใจ มีค่าเท่ากับ n
โดยที่แต่ละสมาชิกของแซมเปิลสเปซนั้น มีโอกาสเกิดขึ้นได้เท่าๆกัน
ความน่าจะเป็นของ การเกิดเหตุการณ์ E เขียนแทนด้วย P(E) จะมีค่าเท่ากับ n/N หรือ P(E)
ความน่าจะเป็นของเหตุการณ์ใดๆ หาได้จากสูตร
P(E)=n(E)/n(S)
เมื่อ P(E) แทนด้วย ความน่าจะเป็นของเหตุการณ์ใดๆที่เราสนใจ
n(E) แทนด้วย จำนวนผลลัพธ์ของเหตุการณ์ที่เราสนใจ
n(S) แทนด้วย จำนนวนผลลัพธ์ทั้งหมดที่อาจจะเกิดขึ้นได้
การทดลองสุ่มและเหตุกราณ์
การทดลองสุ่ม คือ การกระทำหรือการทดลองที่ไม่สามารถคาดการณ์คำตอบล่วงหน้าได้
ตัวอย่างของการทดลองสุ่ม เช่น
- การโยนเหรียญบาท
- การทอดลูกเต๋า
- การจับสลาก
- การเสี่ยงเซียมซี
- การสอยดาว
- การซื้อหวย เป็นต้น
ผลลัพธ์จากการทดลองสุ่ม (Sample Space) คือ ผลลัพธ์ที่เกิดขึ้นได้ทั้งหมดจากการทดลองสุ่ม
ตัวอย่างที่ 1 โยนเหรียญบาท 1 เหรียญ 1 ครั้ง จงหาผลลัพธ์ที่เกิดขึ้นได้ทั้งหมด
ตอบ โยนเหรียญบาท 1 เหรียญ 1 ครั้ง ผลลัพธ์ทั้งหมดที่เกิดขึ้นได้มี 2 แบบ คือ หัว (H) และ ก้อย (T)
ตัวอย่างที่ 2 ทอดลูกเต๋า 1 ลูก 1 ครั้ง จงหาผลลัพธ์ที่เกิดขึ้นได้ทั้งหมด
ตอบ ทอดลูกเต๋า 1 ลูก 1 ครั้ง ผลลัพธ์ที่เกิดขึ้นได้ทั้งหมดมี 6 แบบ คือ 1, 2, 3, 4, 5, 6
เหตุการณ์ (Event) คือ เหตุการณ์ คือสิ่งที่เราสนใจ(นำมาพิจารณา)จากการทดลองสุ่ม
ตัวอย่างเช่น โยนเหรียญบาท 1 เหรียญ 2 ครั้ง ผลลัพธ์ที่เกิดขึ้นได้ทั้งหมดคือ ( H,H), ( H,T), ( T,H), ( T,T)
สมมุติ เราสนใจผลลัพธ์ที่หน้าของเหรียญเหมือน ซึ่งมี 2 แบบ คือ ( H,H), ( T,T)
หรือ ถ้าเราสนใจผลลัพธ์ที่หน้าของเหรียญต่างกัน ซึ่งมี 2 แบบเหมือนกัน คือ ( H,T), ( T,H)
1. แดง ดำ เขียว ยืนเข้าแถวเป็นแนวตรง จงหาความน่าจะเป็นที่ดำและเขียวยืนแยกกัน
S= {(แดง ดำ เขียว) , (แดง เขียว ดำ) , (เขียว แดง ดำ) , (เขียว ดำ แดง) , ( ดำ แดง เขียว) , ( ดำ เขียว แดง )}
ดังนี้ n(S)=6
เหตุการณ์ที่เราสนใจคือ ดำและเขียว ยืนแยกกันคือ
E = {(เขียว แดง ดำ), ( ดำ แดง เขียว)}
นั่นคือ n(E)=2
คำตอบข้อนี้ ความน่าจะเป็นที่ดำและเขียวจะยืนแยกกันคือ P(E)=2/6=1/3
2. กบสุ่มหยิบลูกกวาด 2 เม็ดพร้อมกันจากถุงใบหนึ่งที่มีลูกกวาดสีแดง 4 เม็ด สีดำ 2 เม็ด จงหาความน่าจะเป็นของเหตุการณ์ต่อไปนี้
1) หยิบได้ลูกกวาดสีแดง 1 เม็ด และสีดำ 1 เม็ด
2) หยิบได้ลูกกวาดสีแดงทั้งสองเม็ด
แทน
r1 คือลูกกวาด สีแดง เม็ดที่ 1
r2 คือลูกกวาด สีแดง เม็ดที่ 2
r3 คือลูกกวาด สีแดง เม็ดที่ 3
r4 คือลูกกวาดสีแดง เม็ดที่ 4
b1 คือลูกกวาดสีดำ เม็ดที่ 1
b2 คือลูกกวาดที่ดำ เม็ดที่ 2
ดังนั้น สุ่มหยิบลูกกวาดออกมา 2 เม็ดพร้อมกัน ผลลัพธ์ทั้งหมดที่อาจจะเกิดขึ้นได้คือ
S= { ( r1, r2 ) ,( r1 , r3 ) , (r1,r4) , (r1,b1) , (r1,b2) , ( r2 , r3 ) ,(r2,r4) , (r2,b1) ,(r2,b2) , (r3 ,r4) ,(r3 , b1 ) , ( r3 , b2 ) , (r4 , b1 ) ,
(r4 ,b2) , (b1 , b2 ) }
มีทัังหมด 15 แบบ ดังนั้น n(S)= 15
1) หยิบได้ลูกกวาดสีแดง 1 เม็ด และสีดำ 1 เม็ด
เหตุการที่หยิบได้ลูกกวาดสีแดง 1 เม็ด และ สีดำ 1 เม็ด คือ
E = { ( r1,b1) , (r1,b2) , (r2,b1) , (r2,b2) , (r3,b1) , (r3,b2) , (r4,b1) , (r4,b2) }
ซึ่งมี 8 แบบ หรือ 8 เหตุการณ์ ดังนั้น n(E)= 8
ดังนั้นความน่าจะเป็นที่จะหยิบได้ลูกกวาดสีแดง 1 เม็ด และ สีดำ 1 เม็ด คือ
P(E)= n(E)/n(S)=8/15
2. เหตุการณ์ที่หยิบได้ลูกกวาดสีแดงทั้งสองเม็ด
E = {( r1,r2) , (r1,r3) , (r1,r4) , (r2,r3) , (r2,r4) , (r3,r4) }
ซึ่งมี 6 แบบ หรือ 6 เหตุการณ์ ดังนั้น n(E)= 6
ดังนั้นความน่าจะเป็นที่จะหยิบได้ลูกกวาดสีแดงทั้งสองเม็ด คือ
P(E)=n(E)/n(S)=6/15=2/5
สรุุปความน่าจะเป็น ( Probability )ในเรื่องที่น่าสนใจ
การทดลองสุ่ม (Random Experiment)
คือ การกระทำที่เราทราบว่าผลทั้งหมดที่อาจจะเกิดขึ้นมีอะไรบ้าง แต่ไม่สามารถบอกอย่างถูกต้องแน่นอนว่าจะเกิดผลอะไรจากผลทั้งหมดที่เป็นไปได้เหล่านั้น
จากการทดลองสุ่มและเราสามารถเขียนทั้งหมดที่อาจเกิดขึ้นจากการทดลองสุ่มได้ โดยอาจใช้แผนภาพช่วย จากการเล่นข้างต้น เช่น การเล่นแบบแรกต้องเอาลูกเต๋าใส่ลงในถ้วยแก้วเขย่าแล้วเทออก เมื่อเทลูกเต๋าออกมา ลูกเต๋าอาจหงายหน้าที่ มีแต้ม 1, 2, 3, 4, 5 หรือ 6 หน้าใดหน้าหนึ่งขึ้นมาก็ได้ แต่เราไม่ทราบแน่นอนว่าจะเกิดหน้าใดขึ้น การกระทำที่เราทราบว่าผลทั้งหมดที่อาจจะเกิดขึ้นมีอะไรบ้าง แต่ไม่สามารถบอกได้อย่างถูกต้องแน่นอนว่าจะเกิดผลอะไรจากผลทั้งหมดที่เป็นไปได้เหล่านั้น เรียกว่า การทดลองสุ่ม
แซมเปิลสเปซ(Sample Space)
คือเซตของผลลัพธ์ที่อาจจะเกิดขึ้นได้ทั้งหมดจากการทดลองสุ่มและเป็นสิ่งที่เราสนใจเรานิยมใช้สัญลักษณ์ S แทนแซมเปิลสเปซ
จากความหมายของแซมเปิลสเปซ แสดงว่า ในการทดลองหรือการกระทำใด ๆ ก็ตาม ผลลัพธ์ที่มีโอกาสจะเกิดขึ้นได้ต้องเป็นสมาชิกในแซมเปิลสเปซทั้งสิ้น
ตัวอย่างที่ 1การหาแซมเปิลสเปซในการโดยเหรียญ 1 เหรียญ ถ้าเราสนใจหน้าที่หงายขึ้นผลลัพธ์ที่อาจจะเกิดขึ้นได้คือ หัว หรือ ก้อย
ดังนั้นแซมเปิลสเปซที่ได้ คือ S={หัว, ก้อย}
ตัวอย่างที่ 2ในการทอดลูกเต๋า1 ลูก ถ้าเราสนใจแต้มของลูกเต๋าที่หงายขึ้นผลลัพธ์ที่อาจจะเกิดขึ้นได้คือ ลูกเต๋าขึ้นแต้ม 1 หรือ 2 หรือ 3 หรือ 4 หรือ 5 หรือ 6
ดังนั้นแซมเปิลสเปซที่ได้คือS = {1, 2,3,4,5,6}
ตัวอย่างที่ 3จากการทดลองสุ่มโดยการทดลองทอดลูกเต๋า 2 ลูก
1. จงหาแซมเปิลสเปซของแต้มของลูกเต๋าที่หงายขึ้น
2. จงหาแซมเปิลสเปซของผลรวมของแต้มบนลูกเต๋า
วิธีทำ 1. เนื่องจากโจทย์สนใจแต้มของลูกเต๋าที่หงายขึ้น ดังนั้นเราต้องเขียนแต้มของลูกเต๋าที่มีโอกาสที่จะหงายขึ้นมาทั้งหมด
และเพื่อความสะดวกให้ (a,b) แทนผลลัพธ์ที่อาจจะเกิดขึ้น โดยที่
a แทนแต้มที่หงายขึ้นของลูกเต๋าลูกแรก
b แทนแต้มที่หงายขึ้นของลูกเต๋าลูกที่สอง
ดังนั้นแซมเปิลสเปซของการทดลองสุ่มคือ
S={(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),
(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),
(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),
(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),
(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),
(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}
2.เนื่องจากโจทย์สนใจผลรวมของแต้มบนลูกเต๋า ดังนั้นเราต้องเขียนผลรวมของแต้มบนลูกเต๋าที่มีโอกาสเกิดขึ้นได้ทั้งหมด
จะได้แซมเปิลสเปซของผลรวมของแต้มบนลูกเต๋าทั้ง 2 ลูก คือ
{2,3,4,5,6,7,8,9,10,11,12}
ตัวอย่างที่ 4ในกล่องใบหนึ่งมีลูกบอลสีแดง 2 ลูก สีขาว 1 ลูก ถ้าเราหยิบลูกบอลออกจากกล่องมา 1 ลูก โดยวิธีสุ่ม
1. จงหาแซมเปิลสเปซของสีของลูกบอลที่จะเกิดขึ้น
2. จงหาแซมเปิลสเปซของลูกบอลที่หยิบออกมาได้
วิธีทำ 1.เนื่องจากโจทย์สนใจสีของลูกบอลที่จะหยิบมาได้ ดังนั้นแซมเปิลสเปซของสีของลูกบอลที่หยิบได้คือ
S={สีแดง,สีขาว}
2.เนื่องจากโจทย์สนใจลูกบอลที่จะหยิบมาได้ ซึ่งมีทั้งหมด 3 ลูก สมมติให้เป็น แดง1 แดง2 ขาว1
ดังนั้นแซมเปลิสเปซของลูกบอลที่หยิบออกมาคือ
S = {แดง1,แดง2, ขาว1}
เหตุการณ์ (Events)
คือ ผลลัพธ์ที่เราสนใจจากการทดลองสุ่ม นิยมใช้ตัวอักษรภาษาอังกฤษ ตัวพิมพ์ใหญ่แทนเหตุการณ์ ตัวอย่าง เช่น
1. โยนเหรียญบาท 1 เหรียญ 2 ครั้งจงหาผลลัพธ์ของเหตุการณ์ที่จะออกหัวอย่างน้อย 1 ครั้ง
ผลลัพธ์ทั้งหมดที่อาจจะเกิดขึ้นจากการทดลองสุ่ม มี 4 แบบ คือ HH, HT, TH และ TT
ผลลัพธ์ของ เหตุการณ์ที่จะออกหัวอย่างน้อย 1 ครั้ง มี 3 แบบ คือ HH, HT และ TH
2. ในการทอดลูกเต๋า 1 ลูก 1 ครั้งต้องการให้เกิดแต้มคู่
ผลลัพธ์ทั้งหมดที่อาจจะเกิดขึ้นได้ จากการทดลองสุ่ม มี 6 แบบ คือ 1, 2, 3, 4, 5 และ 6ผลลัพธ์ของเหตุการณ์ที่ต้องการให้เกิดแต้มคู่มี 3 แบบ คือ 2 , 4 และ 6
ตัวอย่างเหตุการณ์
1. ในการโยนเหรียญ 1 เหรียญ 2 ครั้ง ต้องการหน้าหัวอย่างน้อย 1 ครั้ง
ผลลัพธ์ของ เหตุการณ์ที่จะออกหัวอย่างน้อย 1 ครั้ง มี 3 แบบ คือ HH, HT และ TH
2. ในการทอดลูกเต๋า 1 ลูก 1 ครั้ง ต้องการให้เกิดแต้มคู่
ผลลัพธ์ ที่เกิดขึ้น คือ 2, 4, 6
ความน่าจะเป็นของเหตุการณ์
ความน่าจะเป็นของเหตุการณ์ คือ จำนวนที่แสดงให้ทราบว่าเหตุการณ์ใดเหตุการณ์หนึ่งมีโอกาสเกิดขึ้น มากหรือน้อยเพียงใด ความน่าจะเป็นของเหตุการณ์ใด ๆ เท่ากับอัตราส่วนของจำนวนเหตุการณ์ที่เราสนใจ (จะให้เกิดขึ้นหรือไม่เกิดขึ้นก็ได้) ต่อจำนวนผลลัพธ์ทั้งหมดที่อาจจะเกิดขึ้นได้ เมื่อผลทั้งหมดที่อาจจะเกิดขึ้นจากการทดลองสุ่มแต่ละตัวมีโอกาสเกิดขึ้นได้เท่าๆ กัน
กำหนดให้ E แทน เหตุการณ์ที่เราสนใจ
P(E) แทน ความน่าจะเป็นของเหตุการณ์
n(E) แทน จำนวนสมาชิกของเดหตุการณ์
S แทน ผลลัพธ์ทั้งหมดที่อาจจะเกิดขึ้นได้
n(S) แทน จำนวนสมาชิกของผลลัพธ์ทั้งหมดที่อาจจะเกิดขึ้นได้
คุณสมบัติของความน่าจะเป็นของเหตุการณ์
1. ความน่าจะเป็นของเหตุการณ์ใดๆ มีค่าตั้งแต่ 0 ถึง 1
2. ความน่าจะเป็นของเหตุการณ์ที่เกิดขึ้นแน่นอน เท่ากับ 1
3. ความน่าจะเป็นของเหตุการณ์ที่ไม่มีโอกาสเกิดขึ้นเท่ากับ 0
ตัวอย่างความน่าจะเป็นของเหตุการณ์
1. การโยนเหรียญบาท 3 เหรียญพร้อมกัน 1 ครั้ง จงหาความน่าจะเป็นของเหตุการณ์ที่ขึ้นหน้าก้อย อย่างน้อย 2 เหรียญ
ให้ H แทน หัว T แทน ก้อย การโยนเหรียญบาท 3 เหรียญ พร้อมกัน 1 ครั้ง ผลลัพธ์ที่เกิดขึ้นมี 8 แบบ คือ HHH, HHT, HTH, HTT, THH, THT, TTH และ TTT แต่บอกไม่ได้แน่นอนว่าเมื่อโยนเหรียญแล้วจะขึ้นหน้าใด ถ้าเหตุการณ์ที่เราสนใจ คือ ขึ้นหน้าก้อยอย่างน้อย 2 เหรียญ ผลลัพธ์ที่เกิดขึ้น มี 4 แบบ คือ HTT, THT, TTH และ TTT ดังนั้นความน่าจะเป็นของเหตุการณ์ที่ขึ้นหน้าก้อยอย่างน้อย 2 เหรียญ
2. การหยิบลูกปิงปอง 1 ลูก 1 ครั้ง จากกล่องใบหนึ่งมีลูกปิงปองสีแดง 4 ลูก สีขาว 4 ลูก สีน้ำเงิน 3 ลูก สีเขียว 3 ลูก และสีส้ม 6 ลูก ปะปนกันอยู่ ด.ญ.สุรีย์พรสุ่มหยิบลูกปิงปองจากกล่องใบนี้ขึ้นมา 1 ลูก จงหาความน่าจะเป็นที่จะหยิบได้ลูกปิงปองสีส้ม
จากโจทย์ เราสามารถหาผลลัพธ์ที่อาจจะเกิดขึ้นได้จากการทดลองสุ่ม หยิบลูกปิงปองทั้ง 5 สี จากกล่องใบนี้มา 1 ลูก คือ 4 + 4 + 3 + 3 + 6 = 20 ลูก ดังนั้นจำนวนสมาชิกทั้งหมดเท่ากับ 20 หรือ n(S) = 20
ให้ E แทนเหตุการณ์ที่ ด.ญ.สุรีย์พร สุ่มหยิบลูกปิงปอง 1 ลูก จากกล่องที่มีลูกปิงปอง สีส้ม 6 ลูก จะได้ n(E) = 6
ความน่าจะเป็นกับการตัดสินใจ
จากการศึกษาเรื่องความน่าจะเป็นสามารถช่วยให้เรารู้ว่าเหตุการณ์ที่พิจารณา อยู่นั้นมีโอกาสเกิดขึ้นมากน้อยเพียงใด แต่บางเหตุการณ์ความรู้ เรื่องความน่าจะเป็นเพียงอย่างเดียว อาจไม่เพียงพอที่จะช่วยเราตัดสินใจได้ จำเป็นจะต้องหาองค์ประกอบอื่นมาช่วยในการตัดสินใจด้วย ซึ่งองค์ประกอบหนึ่ง คือ ผลตอบแทนของการเกิดเหตุการณ์นั้น ในทางสถิติได้นำความน่าจะเป็นของเหตุการณ์และผลตอบแทนของการเกิดเหตุการณ์ นั้น พิจารณาประกอบกันเป็นค่าคาดหมาย ซึ่งหาได้จากผลรวมของผลคูณระหว่างความน่าจะเป็น ของเหตุการณ์กับผลตอบแทนของเหตุการณ์
ค่าคาดหมาย = (ผลตอบแทนที่ได้ X ความน่าจะเป็นของเหตุการณ์ที่ต้องการให้เกิดขึ้น) +
(ผลตอบแทนที่เสีย X ความน่าจะเป็นของเหตุการณ์ที่ไม่ต้องการให้เกิดขึ้น)
โดยผลตอบแทนของเหตุการณ์อาจหมายถึง ผลตอบแทนที่ได้หรือผลตอบแทนที่เสีย เช่น ในการโยนเหรียญหัว ก้อย ถ้าออกหัวผู้เล่นจะได้เงิน 2 บาท แต่ถ้าออกก้อยผู้เล่นจะต้องเสียเงิน 3 บาท แสดงว่า เงิน 2 บาทที่ผู้เล่นจะได้รับเป็นผลตอบแทนที่ได้ แทนด้วย +2 และเงิน 3 บาทที่ผู้เล่นจะต้องเสียเป็นผลตอบแทนที่เสียซึ่งแทนด้วย -3