ความหมายทางคณิตศาสตร์เชิงการจัด
สำหรับ n และ m ที่เป็นจำนวนเต็มไม่เป็นลบ (จำนวนเต็มบวกรวมทั้งศูนย์) เลขยกกำลัง nm จะหมายถึงภาวะเชิงการนับ (cardinality) ของเซตของ m สิ่งอันดับ (m-tuple) ที่ได้จากเซตที่มีสมาชิก n ตัว หรือพูดอีกนัยหนึ่งคือ เป็นจำนวนของคำที่มีตัวอักษร m ตัว จากชุดตัวอักษร n ตัว
-
-
ความหมายทางคณิตศาสตร์เชิงการจัด
สำหรับ n และ m ที่เป็นจำนวนเต็มไม่เป็นลบ (จำนวนเต็มบวกรวมทั้งศูนย์) เลขยกกำลัง nm
จะหมายถึงภาวะเชิงการนับ (cardinality) ของเซตของ m สิ่งอันดับ (m-tuple) ที่ได้จากเซตที่มีสมาชิก n ตัว
หรือพูดอีกนัยหนึ่งคือ เป็นจำนวนของคำที่มีตัวอักษร m ตัว จากชุดตัวอักษร n ตัว-
-
05 = │ {} │ = 0 ไม่มีห้าสิ่งอันดับ จากเซตว่าง 14 = │ { (1,1,1,1) } │ = 1 มีสี่สิ่งอันดับ 1 ชุด จากเซตที่มีสมาชิก 1 ตัว 23 = │ { (1,1,1), (1,1,2), (1,2,1), (1,2,2), (2,1,1), (2,1,2), (2,2,1), (2,2,2) } │ = 8 มีสามสิ่งอันดับ 8 ชุด จากเซตที่มีสมาชิก 2 ตัว 32 = │ { (1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3) } │ = 9 มีสองสิ่งอันดับ (คู่อันดับ) 9 ชุด จากเซตที่มีสมาชิก 3 ตัว 41 = │ { (1), (2), (3), (4) } │ = 4 มีหนึ่งสิ่งอันดับ 4 ชุด จากเซตที่มีสมาชิก 4 ตัว 50 = │ { () } │ = 1 มีศูนย์สิ่งอันดับ 1 ชุด จากเซตที่มีสมาชิก 5 ตัว
-
-
-
เลขชี้กำลังเป็นจำนวนเต็มลบ
จากนิยาม จำนวนใด ๆ ที่ไม่เป็นศูนย์ เมื่อยกกำลังด้วย −1 จะทำให้เกิดส่วนกลับหรือตัวผกผันการคูณ
จึงสามารถนิยามว่า
กำลังของ 1
กำลังจำนวนเต็มของ 1 ทุกจำนวนมีค่าเท่ากับ 1 นั่นคือ 1n = 1
กำลังของ 0
ถ้าเลขชี้กำลังเป็นจำนวนบวก เลขยกกำลังของ 0 จะได้ 0 นั่นคือ 0n = 0; n > 0
ถ้าเลขชี้กำลังเป็นจำนวนลบ เลขยกกำลังของ 0 จะไม่นิยาม เนื่องจากทำให้เกิดการหารด้วยศูนย์
ถ้าเลขชี้กำลังเป็นศูนย์ ผู้แต่งตำราบางท่านได้นิยามว่า 00 = 1 ในขณะที่บางท่านก็คงไว้ว่าไม่นิยาม ดูที่หัวข้อ 0 ยกกำลัง 0
กำลังของ −1
ถ้า n เป็นจำนวนคู่ จะได้ (−1)n = 1
ถ้า n เป็นจำนวนคี่ จะได้ (−1)n = −1
จากสมบัติดังกล่าว กำลังของ −1 จึงมีประโยชน์ในการแสดงลำดับที่มีการสลับเครื่องหมาย ส่วนกรณีที่คล้ายกันสำหรับจำนวนเชิงซ้อน i ดูที่หัวข้อกำลังของจำนวนเชิงซ้อน
เมื่อ a เป็นจำนวนใด ๆ ที่ไม่เป็นศูนย์และ n เป็นจำนวนเต็มบวก แต่สำหรับจำนวน 0 ยกกำลังจำนวนลบ จะทำให้เกิด
กรณีการหารด้วยศูนย์ จึงไม่มีการนิยาม
ทั้งบวก ลบ และศูนย์) จากเดิมเป็นจริงเฉพาะเมื่อ m กับ n เป็นจำนวนเต็มไม่เป็นลบ โดยเฉพาะอย่างยิ่ง
การใช้เอกลักษณ์นี้โดยกำหนดให้ m = −n จะทำให้
เมื่อ a0 ได้นิยามเช่นนั้นแล้ว เป็นเหตุให้นำไปสู่การนิยาม a−n = 1/an ดังที่ได้กล่าวแล้ว
การยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็มลบ อาจสามารถเขียนให้อยู่ในรูปของการหารซ้ำ ๆ จาก 1 ด้วยฐานก็ได้ ตัวอย่างเช่น