ตรรกศาสตร์ (Mathematical Logic )
ประพจน์ที่สมมูลกัน
ประพจน์ 2 ประพจน์จะสมมูลกัน ก็ต่อเมื่อ ประพจน์ทั้งสองมีค่าความจริงเหมือนกัน ทุกกรณีของค่าความจริงของประพจน์ย่อย
การทดสอบว่าประพจน์ 2 ประพจน์ สมมูลกัน ทำได้ 2 วิธี คือ
สร้างตารางแจกแจงค่าความจริง ค่าความจริงต้องตรงกันทุกกรณี
โดยการใช้หลักความจริงและประพจน์ที่สมมูลกันแบบง่ยๆที่ควรจำ เพื่อแปลงรูปประพจน์ไปเป็นแบบเดียวกัน
ตัวอย่างประพจน์ที่สมมูลกันที่ควรทราบ มีดังนี้
p ∧ q สมมูลกับ q ∧ p
p ∨ q สมมูลกับ q ∨ p
(p ∧ q) ∧ r สมมูลกับ p ∧ (q ∧ r)
(p ∨ q) ∨ r สมมูลกับ p ∨ (q ∨ r)
p ∧ (q ∨ r) สมมูลกับ (p ∧ q) ∨ ( p ∧ r)
p ∨ (q ∧ r) สมมูลกับ (p ∨ q) ∧ ( p ∨ r)
p → q สมมูลกับ ~p ∨ q
p → q สมมูลกับ ~q → ~p
p ⇔ q สมมูลกับ (p → q) ∧ (q → p)
ประพจน์ที่เป็นนิเสธกัน
ประพจน์ 2 ประพจน์เป็นนิเสธกัน ก็ต่อเมื่อ ประพจน์ทั้งสองมีค่าความจริงตรงข้ามกันทุกกรณีของค่าความจริงของประพจน์ย่อย
ตัวอย่างประพจน์ที่เป็นนิเสธกันที่ควรทราบ มีดังนี้
~(p ∧ q) สมมูลกับ ~p ∨ ~q
~(p ∨ q) สมมูลกับ ~p ∧ ~q
~(p → q) สมมูลกับ p ∧ ~q
~(p ⇔ q) สมมูลกับ (p ⇔ ~q) ∨(q ⇔ ~p)
~(p ⇔ q) สมมูลกับ (p ∧ ~q) ∨ ( q ∧~p)
สัจนิรันดร์
สัจจะ แปลว่าจริง ส่วนนิรันดร์ แปลว่าตลอดกาล ประพจน์ที่เป็นสัจนิรันดร์ คือ ประพจน์ที่มีค่าความจริงเป็นจริง ทุกกรณีของประพจน์ย่อย
ประโยคเปิด (Open Sentence)
คือข้อความที่อยู่ในรูปประโยคบอกเล่าหรือปฏิเสธ ที่มีตัวแปรและสื่อแทนค่าของตัวแปรนั้น จะได้ค่าความจริงแน่นอน หรือเป็นประพจน์ นิยมใช้สัญลักษณ์ P(x), P(x , y), Q(x , y) แทนประโยคเปิดที่มีตัวแปรระบุในวงเล็บ