ตัวประกอบและการหาตัวประกอบ
- จำนวนนับ คือ จำนวนเต็มบวก ได้แก่ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, …
- การหารลงตัว คือ การหารที่ไม่มีเศษ หรือเศษเป็น “0”
- ตัวประกอบของจำนวนนับใด ๆ คือ จำนวนนับที่นำไปหารจำนวนนับนั้นได้ลงตัว
- จำนวนเฉพาะ คือ จำนวนนับที่มีตัวประกอบเพียงสองตัว คือ 1 กับจำนวนนับนั้น
- ตัวประกอบเฉพาะ คือ ตัวประกอบที่เป็นจำนวนเฉพาะ
- การแยกตัวประกอบของจำนวนใด ๆ คือ การเขียนจำนวนนั้นในรูป ผลคูณของตัวประกอบเฉพาะ (อาจจะมีตัวประกอบมากกว่า 2 จำนวน)
ตัวประกอบ หมายถึง จำนวนนับที่หารจำนวนนับที่เรากำหนดให้ได้ลงตัว เช่น a จะเป็นตัวประกอบของ b ก็ต่อเมื่อ b หารด้วย a ลงตัว หรือกล่าวอีกนัยหนึ่งก็คือ a หาร b ลงตัว
ตัวอย่าง
30 หารด้วย 6 ลงตัว แสดงว่า 6 เป็นตัวประกอบของ 30 ในขณะที่ 30 หารด้วย 4 ไม่ลงตัว แสดงว่า 4 ไม่เป็นตัวประกอบของ 30 เป็นต้น
หรือ
จำนวนที่หาร 18 ลงตัวประกอบด้วย 1 , 2 , 3 , 6 , 9 , 18 แสดงว่า 1 , 2 , 3 , 6 , 9 , 18 เป็นตัวประกอบของ 18
จำนวนเฉพาะ หมายถึง จำนวนที่มีตัวประกอบเพียง 2 ตัว คือ 1 กับตัวของมันเอง
การหาตัวประกอบของจำนวนนับใด ๆ จะพบว่า บางจำนวนที่ตัวประกอบเพียง 1 ตัว บางจำนวนมีตัวประกอบ 2 ตัว ในขณะที่บางตัวมีตัวประกอบมากกว่า 2 ตัว
1 มีตัวประกอบ 1 ตัว คือ 1
6 มีตัวประกอบ 4 คือ 1 , 2 , 3 , 6
2 มีตัวประกอบ 2 คือ 1 , 2 หรืออีกนัยหนึ่งว่า 2 มีตัวประกอบ 2 คือ 1 กับ ตัวของมันเอง
3 มีตัวประกอบ 2 คือ 1 , 3 หรืออีกนัยหนึ่งว่า 3 มีตัวประกอบ 2 คือ 1 กับ ตัวของมันเอง
จากตัวอย่างด้านบน เราพบว่า 1 มีตัวประกอบ 1 ตัว 6 มีตัวประกอบ 4 ตัว ในขณะที่ 2 และ 3 มีตัวประกอบ 2 ตัว คือ 1 กับ ตัวของมันเอง เราเรียกจำนวนที่มีตัวประกอบเพียง 2 ตัวนี้ว่า จำนวนเฉพาะ
ตัวประกอบเฉพาะ ตัวประกอบของจำนวนนับใดที่เป็นจำนวนเฉพาะ
การหาตัวประกอบเฉพาะของจำนวนนับใด ๆ นั้น เราจะต้องหาตัวประกอบทั้งหมดของจำนวนนับนั้น ๆก่อน จากนั้นจึงค่อยพิจารณา ตัวประกอบเหล่านั้นว่า มีจำนวนใดเป็นจำนวนเฉพาะบ้าง ซึ่งจำนวนเฉพาะเหล่านั้นเราเรีนกว่า ตัวประกอบเฉพาะ
ขอบคุณข้อมูล https://www.scimath.org/