พหุนามผลต่างกำลังสอง การแยกตัวประกอบของพหุนามเป็นผลต่างของกำลังสอง
การแยกตัวประกอบพหุนามดีกรีสองที่มีตัวแปรเดียว
ตัวอย่าง ของพหุนามดีกรีสองตัวแปรเดียว
3x2+ 4x + 5 , 2x2– 6x – 1 , x2– 9 , y2+ 3y – 7 , -y2+ 8y
การแยกตัวประกอบของพหุนามดีกรีสองตัวแปรเดียว
ในกรณีที่ c = 0 พหุนามดีกรีสองตัวแปรเดียวจะอยู่ในรูป ax2+ bx สามารถใช้สมบัติ
ตัวอย่างที่ 1 จงแยกตัวประกอบของ x2 + 2x
วิธีทำ x2 + 2x = (x)(x) + (2)(x)
= x(x + 2)
ตัวอย่างที่ 2 จงแยกตัวประกอบของ 4x2 – 20x
วิธีทำ 4x2 – 20x = (4x)(x) – (4x)(5)
= 4x(x – 5)
ตัวอย่างที่ 3 จงแยกตัวประกอบของ -4x2 – 6x
วิธีทำ -4x2 – 6x = -2x(2x + 3)
หรือ -4x2 – 6x = 2x(-2x – 3)
ตัวอย่างที่ 4 จงแยกตัวประกอบของ -15x2 + 12x
วิธีทำ -15x2 + 12x = (3x)(-5x) + (3x)(4)
= 3x(-5x + 4)
หรือ -15x2 + 12x = (-3x)(-5x) – (-3x)(4)
= -3x(5x – 4)
การแยกตัวประกอบของพหุนามดีกรีสองตัวแปรเดียว
ในรูป ax2 + bx + c เมื่อ a = 1 , b และ c เป็นจำนวนเต็ม และ c ≠ 0
ในกรณีที่ a = 1 และ c ≠ 0 พหุนามดีกรีสองตัวแปรเดียว จะอยู่ในรูป x2 + bx + c
สามารถแยกตัวประกอบของพหุนามในรูปนี้ได้ โดยอาศัยแนวคิดจากการหาผลคูณของพหุนาม
ดังตัวอย่างต่อไปนี้
โดยทำขั้นตอนย้อนกลับ ดังนี้
x2 + 5x + 6 = x2 + (2 + 3)x + (2)(3) [ 2 + 3 = 5 และ (2) × (3) = 6 ]
= x2 + (2x + 3x) + (2)(3)
= (x2 + 2x) + [3x + (2)(3)]
= (x + 2)x + (x + 2)(3)
= (x + 2)(x + 3)
นั่นคือ x2 + 5x + 6 = (x + 2)(x + 3)
พิจารณาผลคูณของพหุนามต่อไปนี้
1. (x + 2)(x + 3) = (x + 2)(x) + (x + 2)(3)
= (x2 + 2x)+ [3x + (2)(3)]
= x2 + (2x+ 3x) + (2)(3)
= x2 + (2+ 3)x + (2)(3)
= x2 + 5x + 6
ให้สังเกตว่า เราจะแยกตัวประกอบของ x2+ 5x + 6 ได้ ถ้าเราสามารถหาจำนวนเต็ม
(x + 4)(x – 5) = (x + 4)(x) + (x + 4)(-5)
= (x2 + 4x) + [(-5)x + (4)(-5)]
= x2 + [4x + (-5)x] + (4)(-5)
= x2 + [4 + (-5)] x + (4)(-5)
= x2 + (-1)x + (-20)
= x2 – x – 20