อัตราการเกิดปฏิกิริยาเคมี (Reaction rate)
ปฏิกิริยาเคมี คือ กระบวนการเปลี่ยนของสารตั้งต้นไปเป็นสารใหม่ โดยปริมาณสารตั้งต้นจะลดลง และปริมาณสารใหม่จะเกิดขึ้น และเพิ่มปริมาณขึ้นเรื่อยๆ เมื่อเวลาผ่านไป โดยสามารถเขียนให้เข้าใจง่ายด้วยสมการเคมี
ปฏิกิริยาเคมีจำแนกเป็น 2 ประเภท คือ
1. ปฏิกิริยาเคมีสมบูรณ์ คือ การเกิดสารใหม่ขณะที่สารตั้งต้นตัวใดตัวหนึ่งหมดไปหรือหมดทุกตัว
2. ปฏิกิริยาเคมีไม่สมบูรณ์ คือ การเกิดสารใหม่ขณะที่สารตั้งต้นยังเหลือทุกตัว ไม่มีตัวใดตัวหนึ่งหมดไป
ทฤษฎีที่เกี่ยวข้องกับปฏิกิริยาเคมี
1. ทฤษฎีการชนโมเลกุล (Collision Theory) กล่าวถึง โมเลกุลของสารต้องมีการชนซึ่งกันและกัน ซึ่งการชนกันแต่ละครั้งไม่จำเป็นต้องเกิดปฏิกิริยา
2. ทฤษฎีจลน์ของโมเลกุล (Kinetic Theory) กล่าวถึง โมเลกุลต้องมีการเคลื่อนที่ช้าลง ซึ่งก่อให้เกิดพลังงานจลน์ โดยโมเลกุลต้องมีพลังงานสูงพอจึงจะเกิดปฏิกิริยาได้
สถานะการเกิดปฏิกิริยาเคมี
1. ต้องมีจำนวนโมเลกุลมากพอ
2. ต้องมีการชนกันระหว่างโมเลกุล
3. ต้องมีพลังงานสูงพอ โดยอย่างน้อยต้องเท่ากับพลังงานก่อกัมมันต์
4. ต้องมีทิศทางที่เหมาะสม
H2 (g) + F2 (g) = 2HF อัตราการเกิดปฏิกิริยาเร็ว
3H2 (g) + N2 (g) = 2NH3 อัตราการเกิดปฏิกิริยาช้า
หลักการคำนวณอัตราการเกิดปฏิกิริยาเคมี
หลังจากเข้าใจความหมายเบื้องต้นกันไปแล้วคราวนี้จะขออธิบายหลักการคำนวณอัตราการเกิดปฏิกิริยาเคมี หากเป็นปฏิกิริยาทั่วไปนั่นคือ A + 2B → 4C ก็สามารถวัดค่าการเกิดได้ ดังนี้
อัตราปฏิกิริยาของสาร A ลดลง = การเปลี่ยนแปลงความเข้มข้นของสาร A ลดลง ช่วงเวลาที่เกิดปฏิกิริยา = [A]2 – [A]1t2-t1 = – ∆ [A]∆t
อัตราปฏิกิริยาของสาร B ลดลง = การเปลี่ยนแปลงความเข้มข้นของสาร B ลดลง ช่วงเวลาที่เกิดปฏิกิริยา = [B]2 – [B]1t2-t1 = – ∆ [B]∆t
อัตราการเกิดสาร C = ปริมาณสาร C ที่เกิดขึ้นช่วงเวลาที่เกิดปฏิกิริยา = A2+ [A]1t2+t1 = + ∆ [A]∆t
ทั้งนี้สามารถอธิบายสัญลักษณ์ตามสูตรได้คือ
- ∆ = การเปลี่ยนแปลง
- [ ] = ความเข้มข้น (mol/dm3)
- ∆t = ระยะเวลาที่เกิดปฏิกิริยาหรือระยะเวลาที่เปลี่ยนแปลง
- – = อัตราการลดลงของสารตั้งต้น
- + = อัตราการเกิดสารผลิตภัณฑ์
วิธีหาการเกิดปฏิกิริยาเคมี
โดยทั่วไปแล้วปฏิกิริยา คือ A + 2B → 4C ดังนั้นปฏิกิริยาดังกล่าวสามารถวัดอัตราการเกิดปฏิกิริยาได้
อัตราการเกิดปฏิกิริยา = อัตราปฏิกิริยาลดลงของสาร A = – ∆ [A]∆t
อัตราการเกิดปฏิกิริยา = ½ เท่าของอัตราปฏิกิริยาลดลงของสาร B =-12 ∆ [B]∆t
อัตราการเกิดปฏิกิริยา = 1/4 เท่าของอัตราปฏิกิริยาลดลงของสาร C =-14 ∆ [C]∆t
อัตราการเกิดปฏิกิริยาเคมี
อัตราการเกิดปฏิกิริยาเคมี (Rate of chemical reaction) หมายถึง การเปลี่ยนแปลงปริมาณสารในหนึ่งหน่วยเวลาของการเกิดปฏิกิริยาของสารนั้น
อัตราการเกิดปฏิกิริยาเคมี = ปริมาณสารตั้งต้นที่ลดลง
เวลา
อัตราการเกิดปฏิกิริยาเคมี = ปริมาณสารที่เปลี่ยนไป
เวลา
อัตราการเกิดปฏิกิริยาเคมี = ปริมาณสารที่เพิ่มขึ้น
*เวลา
แนวคิดเกี่ยวกับการเกิดปฏิกิริยาเคมี นักวิทยาศาสตร์เชื่อว่าในการเกิดปฏิกิริยาเคมีอนุภาคของสารตั้งต้นซึ่งอาจเป็นโมเลกุล อะตอม หรือไอออนจะต้องชนกัน ถ้าการชนกันทุกครั้งทำให้เกิดปฏิกิริยาเคมี จะมีผลทำให้ปฏิกิริยาเคมีเกิดขึ้นได้เร็ว แต่จาการทดลองพบว่า การชนกันของอนุภาค ไม่สามารถทำให้เกิดปฏิกิริยาทุกครั้ง มีเพียงบางครั้งเท่านั้นที่มีปฏิกิริยาเกิดขึ้น
จากทฤษฎีจลน์ อธิบายได้ว่า ณ อุณหภูมิหนึ่ง โมเลกุลของแก๊สชนิดเดียวกันเคลื่อนที่ด้วยอัตราเร็วแตกต่างกัน โมเลกุลที่เคลื่อนที่ช้าจะมีพลังงานจลน์ต่ำ ส่วนโมเลกุลที่เคลื่อนที่เร็วจะมีพลังงานจลน์สูง ถ้าโมเลกุลที่มีพลังงานจลน์สูงหรือมีอัตราเร็วสูงชนกัน พลังงานที่เกิดจากการชนก็จะมีค่าสูงด้วย ถ้ามีพลังงานสูงพอก็จะเกิดการสลายพันธะในสารตั้งต้น แล้วสร้างพันธะใหม่ขึ้นเป็นสารผลิตภัณฑ์ซึ่งก็คือ การเกิดปฏิกิริยาเคมี แต่ถ้าโมเลกุลที่มีพลังงานจลน์ต่ำเกิดการชนกันและพลังงานมีค่าไม่สูงพอก็จะไม่เกิดปฏิกิริยาเคมีเกิดขึ้น เมื่ออนุภาคของสารชนกันแล้วจะมีปฏิกิริยาเคมีเกิดขี้นหรือไม่ ยังขึ้นอยู่กับทิศทางในการชนกันด้วย เช่น ปฏิกิริยาระหว่างแก๊สไฮโดรเจนกับแก๊สไอโอดิน ดังสมการ
H2(g) + I2(g)2 → 2HIg)2
การที่จะได้แก๊สไฮโดรเจนไอโอไดด์เกิดขึ้น โมเลกุลของแก๊สไฮโดรเจนกับแก๊สไอโอดีนจะต้องมีการชนกันและอาจจัดตัวขณะชนกัน
เมื่อพิจารณาการชนกันของโมเลกุลH2กับI2พบว่าการชนกันแบบ ข. มีโอกาสที่จะเกิดปฏิกิริยาเคมีได้มากกว่าแบบ ก. เนื่องจากทิศทางในการชนกันของโมเลกุลทั้งสองความเหมาะสม
จากข้อมูลที่กล่าวมาแล้วช่วยให้สรุปได้ว่าปฏิกิริยาเคมีเกิดขึ้นได้เมื่ออนุภาคของสารตั้งต้นชนกันในทิศทางที่เหมาะสม รวมทั้งต้องมีพลังงานที่เกิดจากการชนกันอย่างน้อยที่สุดปริมาณหนึ่งซึ่งเท่ากับ พลังงานก่อกัมมันต์ ใช้สัญลักษณ์ย่อเป็น Ea
พลังงานก่อกัมมันต์เป็นค่าที่คำนวณจากผลการทดลอง ซึ่งในแต่ละปฏิกิริยาจะมีค่าพลังงานก่อกัมมันต์ไม่เท่ากัน โดยปกติโมเลกุลที่มีพลังงานเท่ากับหรือมากกว่าพลังงานก่อกัมมันต์มีจำนวนน้อยมาก เพื่อให้เข้าใจดีขึ้นจึงอาจเปรียบเทียบการเกิดปฏิกิริยาเคมีกับการเดินทางข้ามภูเขาดังรูปที่1 ด้านล่าง
จากรูป คนที่จะเดินข้ามภูเขาได้ต้องแข็งแรงมากหรือมีพลังงานมาก ดังนั้นจำนวนคนที่จะเดินข้ามภูเขาได้ภายในเวลาที่กำหนด จึงขึ้นอยู่กับองค์ประกอบที่สำคัญ 2 ประการ คือ (1) จำนวนคนที่แข็งแรงหรือมีพลังงานมากและ (2) ความสูงของภูเขา
ถ้าอุปมาอุปไมยจำนวนคนที่แข็งแรงหรือมีพลังงานสูงกับจำนวนอนุภาคที่มีพลังงานสูง และความสูงของภูเขากับค่าพลังงานก่อกัมมันต์ของปฏิกิริยานั้น ช่วยให้อธิบายได้ว่าการที่บางปฏิกิริยาเกิดขึ้นช้ามาก เพราะปฏิกิริยานั้นมีค่าพลังงานก่อกัมมันต์สูงมาก และอนุภาคที่มีพลังงานสูงมีจำนวนน้อย โอกาสที่จะชนกันเพื่อให้ได้พลังงานสูงเท่ากับพลังงานก่อกัมมันต์จึงมีน้อยด้วย ในกรณีของปฏิกิริยาที่เกิดได้เร็วก็อธิบายได้ในทำนองเดียวกัน
สำหรับการอธิบายการเกิดปฏิกิริยาเคมีอีกแนวคิดหนึ่งอธิบายว่า เมื่อสารเข้าทำปฏิกิริยากันจะมีสารใหม่เกิดขึ้นเป็นผลิตภัณฑ์ และในระหว่างที่สารตั้งต้นเปลี่ยนเป็นผลิตภัณฑ์นั้น จะมีสารเชิงซ้อนกัมมันต์เกิดขึ้นก่อนเพียงชั่วขณะแล้วสารเชิงซ้อนกัมมันต์ก็สลายให้ผลิตภัณฑ์ต่อไป เช่น ปฏิกิริยาระหว่างแก๊สCO กับNO2เกิดเป็นแก๊สCO2และNO
ทางด้านสารตั้งต้นจะมีพันธะระหว่างอะตอมC กับO ในโมเลกุลCO และN กับOในโมเลกุล NO2เท่านั้น เมื่อเกิดเป็นสารเชิงซ้อนกัมมันต์ ความแข็งแรงของพันธะระหว่างอะตอมN กับO ในNO2จะลดลง และเริ่มมีพันธะอย่างอ่อน ๆ เกิดขึ้นระหว่างอะตอมของC ในCO กับ O ในNO2เมื่อสารเชิงซ้อนกัมมันต์สลายตัวให้ผลิตภัณฑ์ จะมีการสลายพันธะเดิมระหว่างอะตอม N กับ O และมีพันธะระหว่างอะตอม C กับ O เกิดขึ้นแทนที่ สารเชิงซ้อนกัมมันต์อยู่ในสภาวะที่ไม่เสถียรเพราะมีพลังงานสูงมาก สภาวะดังกล่าวนี้เรียกว่า สภาวะแทรนซิชัน จึงอาจกล่าวได้ว่าพลังงานของสภาวะแทรนซิชันจะมีค่าประมาณพลังงานก่อกัมมันต์นั่นเอง ทั้งนี้เพราะการที่ปฏิกิริยาเคมีจะเกิดขึ้นได้อนุภาคของสารที่ชนกันจะต้องมีพลังงานอย่างน้อยทีสุดเท่ากับพลังงานก่อกัมมันต์