เรียนคณิตศาสตร์ ม.5 คณิตศาสตร์พื้นฐานเรื่อง ฟังก์ชัน
บทที่ 2 ฟังก์ชัน
2.1 ฟังก์ชัน
2.2 ฟังก์ชันเชิงเส้น
2.3 ฟังก์ชันกำลังสอง
2.4 ฟังก์ชันขั้นบันได
2.5 ฟังก์ชันเอกซ์โพเนนเชียล
ฟังก์ชันเชิงเส้นและฟังก์ชันกำลังสอง-ฟังก์ชัน ม.4
ฟังก์ชันเชิงเส้นและฟังก์ชันกำลังสอง
ฟังก์ชันเชิงเส้น
ฟังก์ชันเชิงเส้น คือ ฟังก์ชันที่อยู่ในรูป y = ax + b เมื่อ a และ b เป็นจำนวนจริง โดยที่ a 0
กราฟของฟังก์ชันเชิงเส้นจะเป็นเส้นตรง
วิธีวาดกราฟฟังก์ชันเชิงเส้น
ขั้นที่ 1 หาจุดตัดก่อน
หาจุดตัดแกน x ให้ค่า y = 0
หาจุดตัดแกน y ให้ค่า x = 0
ขั้นที่ 2 ลากเส้นเชื่อมระหว่างจุด
ฟังก์ชันกำลังสอง
ฟังก์ชันกำลังสอง คือ ฟังก์ชันที่อยู่ในรูป y = ax2 + bx + c เมื่อ a , b และ c เป็นจำนวนจริง โดยที่ a 0
กราฟของฟังก์ชันกำลังสองจะเป็นรูปพาราโบลา
รูปแบบฟังก์ชันกำลังสอง
1. รูปแบบมาตรฐาน y = a(x – h)2 + k
จุดยอดอยู่ที่ (h , k)
สมการแกนสมมาตร x = h
อย่าลืม. ถ้า a > 0 กราฟหงาย
a < 0 กราฟคว่ำ
2. รูปแบบทั่วไป y = ax2 + bx + c
จุดยอดอยู่ที่ . ่
สมการแกนสมมาตร x =
อย่าลืม ถ้า a > 0 กราฟหงาย
a < 0 กราฟคว่ำ
ฟังก์ชันขั้นบันได
ฟังก์ชันขั้นบันได
ฟังก์ชันขั้นบันได (Step Function)
ฟังก์ชันขั้นบันได หมายถึงฟังก์ชันที่มีโดเมนเป็นสับเซตของเซตของจำนวนจริงและมีค่าของฟังก์ชันเป็นค่าคงตัวเป็นช่วงๆ
มากกว่าสองช่วงกราฟของฟังก์ชันนี้มีลักษณะคล้ายขั้น บันได
กราฟของฟังก์ชันนี้จะมีรูปร่างคล้ายขั้นบันได
นิยาม
ฟังก์ชัน f : R → R จะเรียกว่าฟังก์ชันขั้นบันได ถ้าฟังก์ชัน fสามารถเขียนให้อยู่ในรูปแบบนี้ได้
สำหรับทุกจำนวนจริง x
เมื่อ n ≥ 0, αi เป็นจำนวนจริง (ค่าคงตัว), Ai คือช่วงต่าง ๆ และ χA คือฟังก์ชันบ่งชี้
(indicator function) ของช่วง Aนั่นคือ
ในนิยามเช่นนี้ ช่วง Ai ต่าง ๆ จะต้องมีสมบัติที่สมมติขึ้นสองประการดังนี้
- ช่วงต่าง ๆ จะต้องไม่มีส่วนร่วมต่อกัน นั่นคือ Ai ∩ Aj = ∅ โดยที่ i ≠ j
- ยูเนียนของช่วงทุกช่วง คือเซตจำนวนจริงทั้งเซต นั่นคือ ∪i Ai = R
ในกรณีที่สมบัติของฟังก์ชันเริ่มต้นไม่เป็นไปตามข้อสันนิษฐาน เช่นช่วงซ้อนกัน หรือยูเนียนแล้วแต่ไม่ครบเซต
จำนวนจริง เราอาจเลือกช่วงใหม่ที่เทียบเท่าอันทำให้มีสมบัติดังกล่าวได้ ตัวอย่างเช่น กำหนดให้ฟังก์ชันขั้นบันไดนี้
สามารถเขียนใหม่ได้เป็น
สมบัติ
ผลรวมและผลคูณของฟังก์ชันขั้นบันไดสองฟังก์ชัน จะให้ผลเป็นฟังก์ชันขั้นบันไดอีกฟังก์ชันหนึ่ง
และผลคูณของฟังก์ชันขั้นบันไดกับจำนวนคงตัวก็ยังคงเป็นฟังก์ชันขั้นบันได จากกรณีทั้งสองทำให้
ฟังก์ชันขั้นบันไดก่อร่างพีชคณิตขึ้นมาเหนือจำนวนจริง
ฟังก์ชันขั้นบันไดมีจำนวนช่วงเป็นจำนวนจำกัดเท่านั้น ถ้าช่วง Ai ต่าง ๆ
ซึ่ง i = 0, 1, …, n ตามนิยามข้างต้นไม่ทับซ้อนซึ่งกันและกัน และยูเนียนของช่วงทั้งหมดเป็นจำนวนจริง
จะได้ว่า f (x) = αi สำหรับทุกค่าของ x ∈ Ai
ปริพันธ์เลอเบกของฟังก์ชันขั้นบันได คือ
เมื่อ คือความยาวของช่วง A และในกรณีนี้เราสมมติว่าช่วง Ai ทั้งหมดมีความยาวจำกัด
ข้อเท็จจริงคือความเท่ากันนี้สามารถใช้เป็นขั้นตอนแรกในการหาปริพันธ์เลอเบก [1]
สมบัติ
ผลรวมและผลคูณของฟังก์ชันขั้นบันไดสองฟังก์ชัน จะให้ผลเป็นฟังก์ชันขั้นบันไดอีกฟังก์ชันหนึ่ง
และผลคูณของฟังก์ชันขั้นบันไดกับจำนวนคงตัวก็ยังคงเป็นฟังก์ชันขั้นบันได จากกรณีทั้งสองทำให้ฟังก์ชันขั้นบันไดก่อร่าง
พีชคณิตขึ้นมาเหนือจำนวนจริงฟังก์ชันขั้นบันไดมีจำนวนช่วงเป็นจำนวนจำกัดเท่านั้น ถ้าช่วง Ai ต่าง ๆ ซึ่ง i = 0, 1, …, n
ตามนิยามข้างต้นไม่ทับซ้อนซึ่งกันและกัน และยูเนียนของช่วงทั้งหมดเป็นจำนวนจริง
จะได้ว่า f (x) = αi สำหรับทุกค่าของ x ∈ Aiปริพันธ์เลอเบกของฟังก์ชันขั้นบันได คือ เมื่อ
คือความยาวของช่วง A และในกรณีนี้เราสมมติว่าช่วง Ai ทั้งหมดมีความยาวจำกัด
ข้อเท็จจริงคือความเท่ากันนี้สามารถใช้เป็นขั้นตอนแรกในการหาปริพันธ์เลอเบก
ฟังก์ชันเอกซ์โพเนนเชียล
ฟังก์ชันเอกซ์โพเนนเชียล(Exponential Function)
จากการศึกษาในเรื่องเลขยกกำลัง ซึ่งท้ายที่สุดเราได้สนใจเลขยกกำลังที่มีฐานเป็นจำนวนจริงบวก และเลขชี้กำลังเป็นจำนวนจริงใด ๆ
แต่ได้มีนักคณิตศาสตร์ได้สังเกตเห็นว่า ถ้าเลขยกกำลังมีฐานเป็น 1 และเลขชี้กำลังเป็นจำนวนจริงใด ๆ ดังนี้
ถ้ากำหนดให้ a = 1 และ x เป็นจำนวนจริงใดแล้วจะได้
ax = 1x = 1
ข้อสังเกต
- ไม่ว่า x จะเป็นจำนวนจริงใด ๆ ก็ตาม 1x ก็ยังคงเท่ากับ 1 เสมอ ดังนั้นจึงไม่น่าสนใจ เนื่องจาก เราทราบว่ามันเป็นอะไรแน่ ๆ อยู่แล้ว
- เรายังไม่ทราบนะว่า เลขยกกำลังที่มีฐานเป็นจำนวนจริงบวกยกเว้น 1 และเลขชี้กำลังเป็นจำนวนจริงใด ๆ แสดงว่าเราจะต้องสนใจศึกษาเลขยกกำลังลักษณะนี้เป็นพิเศษ ซึ่งจะกล่าวถึงใน เรื่องฟังก์ชันเอกซ์โพเนนเชียลดังนี้
ข้อกำหนด (ฟังก์ชันเอกซ์โพเนนเชียล)
ฟังก์ชันเอกซ์โพเนนเชียล คือ f = { (x, y) Î R ´ R+ / y = ax , a > 0, a ¹ 1 }
ข้อตกลง ในหนังสือคณิตศาสตร์บางเล่มให้ข้อกำหนดของฟังก์ชันเอกซ์โพเนนเชียล เป็นฟังก์ชันที่อยู่ในรูป f(x) = kax เมื่อ k เป็นค่าคงตัวที่ไม่ใช่ 0 และ a เป็นจำนวนจริงบวกที่ไม่เป็น 1 แต่ในหลักสูตรมัธยมศึกษาตอนปลายนี้ จะถือว่าฟังก์ชันเอกซ์โพเนนเชียลจะอยู่ในรูป f(x) = ax เมื่อ a เป็น จำนวนจริงบวกที่ไม่เป็น 1 เท่านั้น
ข้อสังเกต จากข้อกำหนดฟังก์ชันเอกซ์โพเนนเชียล
- f(x) = 1x เป็นฟังก์ชันคงตัวเนื่องจาก 1x = 1 ดังนั้นในข้อกำหนดฟังก์ชันเอกซ์โพเนนเชียล จึงไม่สนใจ ฐาน (a) ที่เป็น 1
- f(x) = 1x ไม่เป็นฟังก์ชันเอ็กซ์โพเนนเชียล เนื่องจาก f(x) = 1x เป็นฟังก์ชันคงตัว
- จากเงื่อนไขที่ว่า y = ax, a > 0, a ¹ 1 ทำให้เราทราบได้เลยว่าฐาน (a) มีอยู่ 2 ลักษณะ คือ 0 < a < 1 กับ a > 1
- ฟังก์ชันเอกซ์โพเนนเชียลจะมีอยู่ 2 ชนิด โดยขึ้นอยู่กับลักษณะของฐาน (a) ดังนี้
ชนิดที่ 1 y = ax, 0 < a < 1
ชนิดที่ 2 y = ax, a > 1
นิยามของฟังก์ชันเอกซ์โพเนนเชียล
ฟังก์ชันเอกซ์โพเนนเชียล (Exponential Function)
จากการศึกษาในเรื่องเลขยกกำลัง ซึ่งท้ายที่สุดเราได้สนใจเลขยกกำลังที่มีฐานเป็นจำนวนจริงบวก และเลขชี้กำลังเป็นจำนวนจริงใด ๆ
แต่ได้มีนักคณิตศาสตร์ได้สังเกตเห็นว่า ถ้าเลขยกกำลังมีฐานเป็น 1 และเลขชี้กำลังเป็นจำนวนจริงใด ๆ ดังนี้
ถ้ากำหนดให้ a = 1 และ x เป็นจำนวนจริงใดแล้วจะได้
ax = 1x = 1
ข้อสังเกต
- ไม่ว่า x จะเป็นจำนวนจริงใด ๆ ก็ตาม 1x ก็ยังคงเท่ากับ 1 เสมอ ดังนั้นจึงไม่น่าสนใจ เนื่องจาก เราทราบว่ามันเป็นอะไรแน่ ๆ อยู่แล้ว
- เรายังไม่ทราบนะว่า เลขยกกำลังที่มีฐานเป็นจำนวนจริงบวกยกเว้น 1 และเลขชี้กำลังเป็นจำนวนจริงใด ๆ แสดงว่าเราจะต้องสนใจศึกษาเลขยกกำลังลักษณะนี้เป็นพิเศษ ซึ่งจะกล่าวถึงใน เรื่องฟังก์ชันเอกซ์โพเนนเชียลดังนี้
ข้อกำหนด (ฟังก์ชันเอกซ์โพเนนเชียล)
ฟังก์ชันเอกซ์โพเนนเชียล คือ f = { (x, y) Î R ´ R+ / y = ax , a > 0, a ¹ 1 }
ข้อตกลง ในหนังสือคณิตศาสตร์บางเล่มให้ข้อกำหนดของฟังก์ชันเอกซ์โพเนนเชียล เป็นฟังก์ชันที่อยู่ในรูป f(x) = kax เมื่อ k เป็นค่าคงตัวที่ไม่ใช่ 0 และ a เป็นจำนวนจริงบวกที่ไม่เป็น 1 แต่ในหลักสูตรมัธยมศึกษาตอนปลายนี้ จะถือว่าฟังก์ชันเอกซ์โพเนนเชียลจะอยู่ในรูป f(x) = ax เมื่อ a เป็น จำนวนจริงบวกที่ไม่เป็น 1 เท่านั้น
ข้อสังเกต จากข้อกำหนดฟังก์ชันเอกซ์โพเนนเชียล
- f(x) = 1x เป็นฟังก์ชันคงตัวเนื่องจาก 1x = 1 ดังนั้นในข้อกำหนดฟังก์ชันเอกซ์โพเนนเชียล จึงไม่สนใจ ฐาน (a) ที่เป็น 1
- f(x) = 1x ไม่เป็นฟังก์ชันเอ็กซ์โพเนนเชียล เนื่องจาก f(x) = 1x เป็นฟังก์ชันคงตัว
- จากเงื่อนไขที่ว่า y = ax, a > 0, a ¹ 1 ทำให้เราทราบได้เลยว่าฐาน (a) มีอยู่ 2 ลักษณะ คือ 0 < a < 1 กับ a > 1
- ฟังก์ชันเอกซ์โพเนนเชียลจะมีอยู่ 2 ชนิด โดยขึ้นอยู่กับลักษณะของฐาน (a) ดังนี้
ชนิดที่ 1 y = ax, 0 < a < 1
ชนิดที่ 2 y = ax, a > 1
กราฟของฟังก์ชัน y = ax, 0 < a < 1