“f(x)” เปลี่ยนทางมาที่นี่ สำหรับวงดนตรีเกาหลี ดูที่ เอฟ (เอกซ์)
ในคณิตศาสตร์ ฟังก์ชัน คือ ความสัมพันธ์ จาก เซต หนึ่ง (โดเมน) ไปยังอีกเซตหนึ่ง (โคโดเมน ไม่ใช่ เรนจ์) โดยที่สมาชิกตัวหน้าไม่ซ้ำกัน ความคิดรวบยอดของฟังก์ชันนี้เป็นพื้นฐานของทุกสาขาของคณิตศาสตร์และวิทยาศาสตร์เชิงปริมาณ
แนวคิด
แนวคิดที่สำคัญที่สุดคือ ฟังก์ชันนั้นเป็น “กฎ” ที่กำหนด ผลลัพธ์โดยขึ้นกับสิ่งที่นำเข้ามา ต่อไปนี้เป็นตัวอย่าง
- แต่ละคนจะมีสีที่ตนชอบ (แดง, ส้ม, เหลือง, เขียว, ฟ้า, น้ำเงิน, คราม หรือม่วง) สีที่ชอบเป็นฟังก์ชันของแต่ละคน เช่น จอห์นชอบสีแดง แต่คิมชอบสีม่วง ในที่นี้สิ่งที่นำเข้าคือคน และผลลัพธ์คือ 1 ใน 8 สีดังกล่าว
- มีเด็กบางคนขายน้ำมะนาวในช่วงฤดูร้อน จำนวนน้ำมะนาวที่ขายได้เป็นฟังก์ชันของอุณหภูมิภายนอก ตัวอย่างเช่น ถ้าภายนอกมีอุณหภูมิ 85 องศา จะขายได้ 10 แก้ว แต่ถ้าอุณหภูมิ 95 องศา จะขายได้ 25 แก้ว ในที่นี้ สิ่งที่นำเข้าคืออุณหภูมิ และผลลัพธ์คือจำนวนน้ำมะนาวที่ขายได้
- ก้อนหินก้อนหนึ่งปล่อยลงมาจากชั้นต่างๆของตึกสูง ถ้าปล่อยจากชั้นที่สอง จะใช้เวลา 2 วินาที และถ้าปล่อยจากชั้นที่แปด จะใช้เวลา (เพียง) 4 วินาที ในที่นี้ สิ่งนำเข้าคือชั้น และผลลัพธ์คือระยะเวลาเป็นวินาทีฟังก์ชันนี้อธิบายความสัมพันธ์ระหว่าง เวลาที่ก้อนหินใช้ตกถึงพื้นกับชั้นที่มันถูกปล่อยลงมา (ดู ความเร่ง)
“กฎ” ที่นิยามฟังก์ชันอาจเป็น สูตร, ความสัมพันธ์ (คณิตศาสตร์) หรือเป็นแค่ตารางที่ลำดับผลลัพธ์กับสิ่งที่นำเข้า ลักษณะเฉพาะที่สำคัญของฟังก์ชันคือมันจะมีผลลัพธ์เหมือนเดิมตลอดเมื่อให้สิ่งนำเข้าเหมือนเดิม ลักษณะนี้ทำให้เราเปรียบเทียบฟังก์ชันกับ “เครื่องกล” หรือ “กล่องดำ” ที่จะเปลี่ยนสิ่งนำเข้าไปเป็นผลลัพธ์ที่ตายตัว เรามักจะเรียกสิ่งนำเข้าว่า อาร์กิวเมนต์ (argument) และเรียกผลลัพธ์ว่า ค่า (value) ของฟังก์ชัน
ชนิดของฟังก์ชันธรรมดาเกิดจากที่ทั้งอาร์กิวเมนต์และค่าของฟังก์ชันเป็นตัวเลขทั้งคู่ ความสัมพันธ์ของฟังก์ชันมักจะเขียนในรูปสูตร และจะได้ค่าของฟังก์ชันมาทันทีเพียงแทนที่อาร์กิวเมนต์ลงในสูตร เช่น
F(x) = xˆ2
ซึ่งจะได้ค่ากำลังสองของ x ใดๆ
โดยนัยทั่วไปแล้ว ฟังก์ชันจะสามารถมีได้มากกว่าหนึ่งอาร์กิวเมนต์ เช่น
G(x,y) = xy
เป็นฟังก์ชันที่นำตัวเลข x และ y มาหาผลคูณ ดูเหมือนว่านี่ไม่ใช่ฟังก์ชันจริงๆดังที่เราได้อธิบายข้างต้น เพราะว่า “กฎ” ขึ้นอยู่กับสิ่งนำเข้า 2 สิ่ง อย่างไรก็ตาม ถ้าเราคิดว่าสิ่งนำเข้า 2 สิ่งนี้เป็น คู่อันดับ(x,y) 1 คู่ เราก็จะสามารถแปลได้ว่า g เป็นฟังก์ชัน โดยที่อาร์กิวเมนต์คือคู่อันดับ (x,y) และค่าของฟังก์ชันคือ xy
ในวิทยาศาสตร์ เรามักจะต้องเผชิญหน้ากับฟังก์ชันที่ไม่ได้กำหนดขึ้นจากสูตร เช่นอุณหภูมิบนพื้นผิวโลกในเวลาใดเวลาหนึ่ง นี่เป็นฟังก์ชันที่มีสถานที่และเวลาเป็นอาร์กิวเมนต์ และให้ผลลัพธ์เป็นอุณหภูมิของสถานที่และเวลานั้นๆ
เราได้เห็นแล้วว่าแนวคิดของฟังก์ชันไม่ได้จำกัดอยู่แค่การคำนวณด้วยตัวเลขเท่านั้น และไม่ได้จำกัดอยู่แค่การคำนวณด้วย แนวคิดของคณิตศาสตร์เกี่ยวกับฟังก์ชัน เป็นแนวคิดโดยทั่วไปและไม่ได้จำกัดอยู่แค่สถานการณ์ที่เกี่ยวข้องกับตัวเลขเท่านั้น แน่นอนว่าฟังก์ชันเชื่อมโยง “โดเมน” (เซตของสิ่งนำเข้า) เข้ากับ “โคโดเมน” (เซตของผลลัพธ์ที่เป็นไปได้) ดังนั้นสมาชิกแต่ละตัวของโดเมนจะจับคู่กับสมาชิกตัวใดตัวหนึ่งของโคโดเมนเท่านั้น ฟังก์ชันนั้นนิยามเป็นความสัมพันธ์ที่แน่นอน ดังที่จะกล่าวต่อไป เป็นเหตุจากลักษณะทั่วไปนี้ แนวคิดรวบยอดของฟังก์ชันจึงเป็นพื้นฐานของทุกสาขาในคณิตศาสตร์
ประวัติ
ในทางคณิตศาสตร์ “ฟังก์ชัน” บัญญัติขึ้นโดย ไลบ์นิซ ใน พ.ศ. 2237 เพื่ออธิบายปริมาณที่เกี่ยวข้องกับเส้นโค้ง เช่น ความชันของเส้นโค้ง หรือจุดบนเส้นโค้ง ฟังก์ชันที่ไลบ์นิซพิจารณานั้นในปัจจุบันเรียกว่า ฟังก์ชันที่หาอนุพันธ์ได้ และเป็นชนิดของฟังก์ชันที่มักจะแก้ด้วยผู้ที่ไม่ใช่นักคณิตศาสตร์ สำหรับฟังก์ชันชนิดนี้ เราสามารถพูดถึงลิมิตและอนุพันธ์ ซึ่งเป็นการทฤษฎีเซต พวกเขาได้พยายามนิยามวัตถุทางคณิตศาสตร์ทั้งหมดด้วยเซต ดีริคเลท และ โลบาเชฟสกี ได้ให้นิยามสมัยใหม่ของฟังก์ชันออกมาเกือบพร้อมๆกัน
ในคำนิยามนี้ ฟังก์ชันเป็นเพียงกรณีพิเศษของความสัมพันธ์ อย่างไรก็ตาม เป็นกรณีที่มีความน่าสนใจเป็นพิเศษ ความแตกต่างระหว่างคำนิยามสมัยใหม่กับคำนิยามของออยเลอร์นั้นเล็กน้อยมาก
แนวคิดของ ฟังก์ชัน ที่เป็นกฎในการคำนวณ แทนที่เป็นความสัมพันธ์ชนิดพิเศษนั้น อยู่ในคณิตตรรกศาสตร์ และวิทยาการคอมพิวเตอร์เชิงทฤษฎี ด้วยหลายระบบ รวมไปถึง แคลคูลัสแลมบ์ดา ทฤษฎีฟังก์ชันเวียนเกิด และเครื่องจักรทัวริง
ความหมายของฟังก์ชัน จากความรู้เรื่องความสัมพันธ์
- กำหนดให้
r1 = { (0,1), (1,2), (2,3), (1,1), (0,4) }
r2 = { (0,3), (1,1), (2,1), (3,4) }
ถ้าต้องการแสดงว่าสมาชิกใดของโดเมนมีความสัมพันธ์กับสมาชิกใดของเรนจ์อาจจะใช้วิธี
เขียนลูกศรโยงเรียกว่าการจับคู่ เช่นจากความสัมพันธ์ r1 และ r2เขียนแผนภาพแสดงการจับคู่ได้ดังนี้
การจับคู่ระหว่างสมาชิกในโดเมนและเรนจ์ของความสัมพันธ์ r1 และ r2 มีข้อแตกต่างกันคือ
ใน r1 มีคู่อันดับที่สมาชิกตัวหน้าเหมือนกัน แต่สมาชิกตัวหลังต่างกัน คือ (0,1) กับ (0,4) และ
(1,1) กับ (1,2) ส่วนใน r2 สมาชิกตัวหน้าของแต่ละคู่อันดับไม่เหมือนกันเลย นั่นคือแต่ละสมาชิก
ในโดเมนของ r2 จะจับคู่กับสมาชิกในเรนจ์ของ r2 เพียงตัวเดียวเท่านั้น
ความสัมพันธ์ที่มีลักษณะดังใน (1), (2) และความสัมพันธ์ r2 ใน (3) เรียกว่า ฟังก์ชัน
จากบทนิยามกล่าวได้ว่า ฟังก์ชัน f คือ ความสัมพันธ์ ซึ่งถ้ามี (x,y)Є f และ (x,z)Є f แล้ว
y = z
r2 , r3 เป็นฟังก์ชัน เพราะไม่มีคู่อันดับใดที่มีสมาชิกตัวหน้าเหมือนกันเลย
ฟังก์ชันหนึ่งต่อหนึ่งทั่วถึง (อังกฤษ: bijection, bijective function) คือฟังก์ชัน f จากเซต X ไปยังเซต Y ด้วยสมบัติที่ว่า จะมีสมาชิก x ใน X เพียงหนึ่งเดียวสำหรับทุก ๆ สมาชิก y ใน Y นั่นคือ f (x) = y และไม่มีสมาชิกเหลือทั้งใน X และ Y
หรือกล่าวได้อีกทางหนึ่งคือ f จะเป็นฟังก์ชันหนึ่งต่อหนึ่งทั่วถึง ถ้าหากมีความสัมพันธ์แบบสมนัยหนึ่งต่อหนึ่ง (one-to-one correspondence) ระหว่างเซตทั้งสอง นั่นคือเป็นทั้งฟังก์ชันหนึ่งต่อหนึ่ง (one-to-one) และฟังก์ชันทั่วถึง (onto)
ยกตัวอย่างฟังก์ชันหนึ่งต่อหนึ่งทั่วถึงเช่น ฟังก์ชัน succ นิยามจากเซตของจำนวนเต็ม Z ไปยัง Z โดยมีความสัมพันธ์สำหรับสมาชิก x เป็น succ (x) = x + 1 อีกตัวอย่างหนึ่งคือ ฟังก์ชัน sumdif ที่สมาชิกคู่อันดับ (x, y) ของจำนวนจริง โดยมีสัมพันธ์กับคู่อันดับเป็น sumdif (x, y) = (x + y, x − y) เป็นต้น
ฟังก์ชันหนึ่งต่อหนึ่งทั่วถึงที่นิยามขึ้นจากเซตหนึ่งไปยังเซตเดิม อาจเรียกได้ว่าเป็นการเรียงสับเปลี่ยน
ฟังก์ชันหนึ่งต่อหนึ่งทั่วถึงมีบทบาทเป็นหลักการพื้นฐานของความรู้ในหลายสาขาของคณิตศาสตร์ ดังเช่นในนิยามของสมสัณฐาน (isomorphism) รวมทั้งแนวคิดอื่น ๆ ที่เกี่ยวข้องเช่น สมานสัณฐาน (homeomorphism) และอนุพันธสัณฐาน (diffeomorphism), กรุปเรียงสับเปลี่ยน (permutation group), การแปลงเชิงภาพฉาย (projective map) และอื่น ๆ อีกมากมาย
ฟังก์ชัน f จะเป็นฟังก์ชันหนึ่งต่อหนึ่งทั่วถึง ก็ต่อเมื่อความสัมพันธ์ผกผัน f −1 เป็นฟังก์ชัน ซึ่งในกรณีนี้ f −1 ก็จะเป็นฟังก์ชันหนึ่งต่อหนึ่งทั่วถึงด้วย
ฟังก์ชันฟังก์ชันทั่วถึง และฟังก์ชันหนึ่งต่อหนึ่ง
บทนิยาม 5.2.1 กำหนดให้ f เป็นความสัมพันธ์จากเซต A ไปยังเซต B (f ⊂ A×B) f เป็นฟังก์ชัน
( function) ก็ต่อเมื่อส าหรับ x ใดๆใน A และ y, z ใดๆใน B ถ้า (x, y)∈ f และ (x, z)∈ f แล้ว y =
z เมื่อ f เป็นฟังก์ชัน สามารถเขียน (x, y)∈f ด้วย y = f(x) เรียก f(x) ว่า ภาพ(image) ของ x
ภายใต้ฟังก์ชัน f
ตัวอย่าง กำหนดให้ A = {a, b, c} และ B = {1, 2, 3}
f = {(a, 1), (b, 2), (b, 3)} ไม่เป็นฟังก์ชัน
g = {(a, 1), (b, 3), (c, 2)} เป็นฟังก์ชัน
h = {(a, 1), (b, 1)} เป็นฟังก์ชัน
บทนิยาม f เป็นฟังก์ชันจาก A ไป B(function from A into B) ก็ต่อเมื่อ f เป็นฟังก์ชันที่มีเซต A
เป็นโดเมนและมีเซตย่อยของเซต B เป็นเรนจ์ เขียนแทนด้วย f : A → B
ตัวอย่าง 5.2.4 ก าหนดให้ A = {a, b, c} และ B = {1, 2, 3}
g = {(a, 1), (b, 3), (c, 2)} เป็นฟังก์ชันจาก A ไป B
h = {(a, 1), (b, 1)} ไม่เป็นฟังก์ชันจาก A ไป B
หมายเหตุ ความสัมพันธ์ h ในตัวอย่าง 5.2.2 และตัวอย่าง 5.2.4 เป็นเซตเดียวกันซึ่งความสัมพันธ์ h ดังกล่าว
เป็นฟังก์ชันแต่โดเมนของความสัมพันธ์ h คือ {a, b} ซึ่งเป็นเซตย่อยแท้ของเซต A ดังนั้น h จึงไม่เป็นฟังก์ชัน
จาก A ไป B