ฟังก์ชันกำลังสอง (Quadratic function)
ฟังก์ชันกำลังสองเป็นฟังก์ชันที่อยู่ในรูป y = ax2 + bx + c เมื่อ a, b, c เป็นจำนวนจริงใด ๆ และ a ¹ 0 ซึ่งกราฟของฟังก์ชันกำลังสอง เรียกว่า พาราโบลา
ในทางคณิตศาสตร์ สมการกำลังสอง (สมการควอดราติก) คือสมการของพหุนามตัวแปรเดียวที่มีดีกรีเท่ากับ 2 รูปแบบทั่วไปของสมการกำลังสองคือ
-
- ax2 + bx + c = 0
เมื่อ a ≠ 0 (ถ้า a = 0 สมการนี้จะกลายเป็นสมการเชิงเส้น) ซึ่ง a, b อาจเรียกว่าเป็นสัมประสิทธิ์ของ x2, x ตามลำดับ ส่วน c คือสัมประสิทธิ์คงตัว บางครั้งเรียกว่าพจน์อิสระหรือพจน์คงตัว ฟังก์ชันของสมการกำลังสองสามารถวาดกราฟบนระบบพิกัดคาร์ทีเซียนได้รูปเส้นโค้งพาราโบลา
1) y = 2x2 + 3x – 10 เมื่อ a = 2 , b = 3 และ c = -1
2) y = x2 + 1 เมื่อ a = 1 , b = 0 และ c = 1
3) y = -x2 + 2x + 1 เมื่อ a = -1 , b = 2 และ c = 1
1) กราฟของฟังก์ชันกำลังสอง ที่กำหนดด้วยสมการ y = ax2 เมื่อ a ¹ 0
กราฟของฟังก์ชันกำลังสอง มีชื่อเรียกว่า พาราโบลา ซึ่งลักษณะของกราฟของฟังก์ชันขึ้นอยู่กับค่าของ a , b และ c และเมื่อ a เป็นบวกหรือลบ จะทำให้ได้กราฟเป็นเส้นโค้งหงายหรือคว่ำ และกราฟของฟังก์ชันกำลังสองที่กำหนดด้วยสมการ y = ax2 เมื่อ a¹ 0 เมื่อ a > 0 และชนิดคว่ำ เมื่อ a < 0
สรุป ลักษณะของกราฟที่กำหนดด้วยสมการ y = ax2 เมื่อ a ¹ 0
– เมื่อ a > 0 ได้พาราโบลาหงาย จุดต่ำสุดอยู่ที่ (0, 0)
เมื่อ a < 0 ได้พาราโบลาคว่ำ จุดสูงสุดอยู่ที่ (0, 0)
– แกนสมมาตรคือ แกน Y หรือเส้นตรง X = 0 ,
สมการแกนสมมาตรคือ X = 0
– เมื่อ a > 0 ค่าต่ำสุดคือ 0 และ เมื่อ a < 0 ค่าสูงสุดคือ 0
– | a | ยิ่งมากกราฟยิ่งแคบ